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Temporal and Spatiotemporal transcriptomics: Sequencing across
multiple time points during developmental and reprogrammlng processes

Reprogramming of fibroblasts to induced pluripotent stem
cells [Schiebinger, et al. Cell, (2019)]

Spatial Transcriptomics of mouse embryos across

8 developmental stages
[Chen, et al. Cell, (2022)]

"And others!
(Pijuan-Sala et al.,
Nature, 2019)

(Liu et

al. Developmental
Cell, 2022)
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Temporal and Spatiotemporal transcriptomics: Opens up the
Analysis of Fundamental Biological Questions!

Questions:

1. Ancestor-descendant
, Jes i relationships between cells across two
: ‘ timepoints?

2. Cell-states or types which index the
5 / temporal process of development?
et “.,. 3. Trajectories between these cell types?
£ ¢ %\ Limitations:

- Technology is destructive —each sample
from a different individual

The "Waddington Landscape" - Do not have ground-truth trajectories!
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Differentiation maps and Cell Types (States)

A cell-type is a coarse-graining of cells A differentiation map is a directed acyclic
into clusters. graph giving the ancestral relationship

between cell-types

cells _ O

N ° P °

“cell type”
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Existing Methods Infer Cell-Cell Coupling
Independent of Cell Type

1. What are the ancestor-descendant relationship between cells across
two timepoints?

Cell-to-cell Coupling o Many existing methods model the dynamics of cells using

%’Sﬁggton OT, DesT-O1 the technique of optimal transport (OT).

o These infer the least-cost mapping between individual cells

, building cell-to-cell trajectories




Existing Methods Infer Cell-Cell Coupling
Independent of Cell Type

Cell-to-cell Couplin
(Waddington OTpDeji,T_OT However, these methods do not:

moscot)

o Learn cell-types (assume cell-type inference is
distinct)

o Find a differentiation map jointly with cell-type




Finding Latent Trajectories over Latent Cell-State

Our work addresses:

2. What are the cell-states or types which "index" the

temporal process of development?

3. What is the differentiation map between these cell types?

Cell-type and Trajectory Inference

“cell type”

cells
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Hidden Markov Optimal Transport (HM-0OT)

(1) Discovers latent cell types and
aligns individual cells to them.

(2) Maps between the cell types while
minimizing an optimal transport cost.

(3) Uses low-rank optimal transport

todo (1) and (2) simultaneously
across multiple timepoints.




O ptl m a l Tl’a n S p O rt (source: shamelessly lifted from Marco Cuturi!)

A puzzle:

https://marcocuturi.net/ot.html
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Optimal Transport

https://marcocuturi.net/ot.html
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Optimal Transport

https://marcocuturi.net/ot.html
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Optimal Transport

The puzzle is: who went where?

https://marcocuturi.net/ot.html
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Optimal Transport

Goal: Find most “natural” explanation O
R X; C;; = cost(x;,y;) Yj
& ®
- o
@ @
. —p
@ @

@
@
https://marcocuturi.net/ot.html
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Optimal Transport Feasible Set

(a,b) = {P € R?*™:Pl,, = a, P'1, = b}

“left marginal” “right marginal”

~_ o H
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Wasserstein Problem
P* = argmin (C, P)

Pcll(a,b)
= argmin E CiiPi; ®
Pcll(a,b) ij
s X; C;; = cost(x;,y;)
@
O
@
o —
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Why use OT for temporal alighment?

The most "natural” alignment minimizes the transcriptional
distance between these cells, represented with cost C;,

x; € R,
g

[ 19
A Cij == C;” = |x} —x]|l;
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Low-Rank™* \Wasserstein Problem

',.‘ ¢ ~ 8
Often the data has some cluster structure, e.g. ' -.: . '.',’: ;
cell types, and the most interesting biological T /\ * e’
question is to understand the mapping at that " a w? .“
resolution. e, *e ! 2 b § .
‘:0.0. 0"\> ....0 .
@
Consider a modification of the puzzle: Seae? .o :.,'
® &
P o ™ o . L
(1) What are the "best" cell types .0.°. ° : .
' ® * e e ® o
(2) Which cell types transitioned to which? W e T \ e
« g ® o ®
0 o ...... ]
\‘ ... > '0

* Latent-coupling (LC) formulation
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L ow-Rank \Wasserstein Problem

P*=arg min (C,P)

perl o Sl ey 52 memm—

LC (latent coupling) factorization of P imposes rank

constraint and decomposes P into 3 factors while keeping it a
feasible coupling

P E Hg17g2 (a7 b)

— P = Qudiag(1/g;)Tdiag(1/g2)Q;

Couples pointdistribution attime 1 to 1 ®e
Ql = H(a’ gl) cell-type distribution at time 1 8

Couples cell-type distribution at time 1 to
T € H(g1 ) g2) cell-type distribution at time 2

T Couples cell-type distribution at time 2 to
QQ < H(g27 b)

point distribution at time 2




Low-Rank Optimal Transport: A Special
Parametrization for a Coupling

- b
NS | E—
a ! < a Q1G

=

Factor relaxation with latent coupling (FRLC)

Low rank approximation of optimal transport
Halmos*, Liu*, Gold*, R. NeurlPS (2024)
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Why use Low-Rank OT for temporal alighment?

Sometimes the clustering / "Glia"
cell types at one timepoint
are not enough to build a

map of cell differentiation!

"Neuron"

Gene B

Timepoint t,
() Timepointt,
"Astrocyte" "Oligodendrocyte"
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Why use Low-Rank OT for temporal alignment?

Need to leverage temporal information to get both differentiation map

and cell-state correct!

HM-OT / Low-Rank OT:

Clusters by ancestry using multiple timepoints.

||Glia||

"Pre-Glia" .
- "ﬁh- y = F

"Neuron"

4 g
Ak

"Pre-Neuron"

:"‘I: B e

"Pre-Astrocyte"

i 2@ OO0 @ Timepoint tw :

@ Timepointt,

"Pre-Oligodendrocyte"

"Astrocyte” "Oligodendrocyte"

Single-timepoint clustering (e.g. k-means)
Only uses information from one timepoint.

"Glia" "Neuron"

- ..QOQQTimepointm "

@ Timepointt,

"Oligodendrocyte"
21
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Hidden-Markov Optimal Transport

distance traveled by the clusters through time.

Problem: Given empirical distributions ( a; )=, _ find the latent factors ( Q, )= .
and differentiation maps (T®"*V),_; . that minimize the Wasserstein

min

Q.T: (Q:,Qey1, T HELCq, a, ; (Teime41) T1

N-1
(C(t,t—|—1), Pty

PR o= Qtdiag(l/gt)T(t’t+1)diag(1/gt+1)lerl

a) Wikl 0, sldelelSNL g
Q: / N\ Q2 / _\ Qs
i
W/ g g
g1 g2 g3
>0
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HM-OT: Algorithm

* Computes MAP estimates of Q,, Tt g using an algorithm
analogous to forward-backward for Hidden Markov
Models (HMM)

* Highly flexible in terms of input information! One can either
run it unsupervised and learn all variables or fix/initialize any
subset of the following and learn the rest:

o Cell-type proportions (g,) [i.e. if you know there are "rare" cell-types]
o Cell to cell-type mappings (Q,) [i.e. if you know cell-types]

* More algorithmic details are in the paper!
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/Zebrafish development is a well-studied model
of organismal development and cell differentiation

Zygote and fertilizedegg Cell division (2 and 4 cells) Gastrula
-y -

s:i B " f. —— [ i e s rl |
Zebrafish development
Na rcia-Cambero,et al. Env.Sci. 2019]
5, gl R AR R T
°,.... i # Nt e [ :[ dunwlfoumue - ™
g : g 3. :. % -

Spatiotemporal transcriptomics
Stereo-Seq [Liu et al. Developmental Cell (2022)] _ 24



Spatiotemporal transcriptomics of zebrafish
embryogenesis

Liu et al. Developmental Cell (2022)

3.3hpf 5.25hpf 10hpf 12hpf

= h‘d AN
T Notochord cell-type "disappears" in

= the published annotation!




HM-OT: Clustering and
Differentiation Map of Zebrafish

HM-OT Cell types (U) Corrects transitions which were

Forebrain

I A —_— ——— — tmmature e Midbram— incorrect with annotated cell-types
Yolk Syncytial Layer Mo ~ = An_gu—)b{astlc Mesenchymal Cell
: I12 ' RS f::'_:j;@t-;olk Sy! o :

— kI

IPeriderm

Anterior Neural Keel
—Posterior NeuralKeel

€liral Crest, Ofic Vesiciem

S I
% X Nervous System
X

Neural ﬁ

~ Pronephros—

/////7 A ; Notochord

12hpf HM-OT (U)

Segmental Plate, Tail Bud »* ~_

I:;anxial Mesoderm, Neural Keel 9
[ - = S Segmentar plate, TaTBud—
Notochord
Somite
Notochord
Stereo-Seq data and celltype = recovered!
annotations from
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HM-OT: Differentiation Map of Zebrafish

HM-QOT inferred cell-types substantially improve the NPMI (pointwise mutual
information) to ground truth trajectories relative to annotated types:

12hpf

NPMI of Cell-
types between
10hpf and 18hpf

HM-OT (S) HM-OT (V) 0.75

. 0.50
Anterior Neural Keel Anterior Neural Keel
Notochord B Notochord N 0.25
Paraxial Mesoderm, Neural Keel Paraxial Mesoderm, Neural Keel 0.00
o Periderm B Periderm :
12hpf HM-OT (U) : & Posterior Neural Keel Posterior Neural Keel - _0.25
i - Segmental Plate, Tail Bud Segmental Plate, Tail Bud 050
j EEEEEE . B Yolk Syncytial Layer B ] Yolk Syncytial Layer '
I . . = = ¢ T C += T W T W _ T E o E ﬁ 2 - w T O e __075
: cSsesoso o832k c8fcscousezget
QO P JLLC T S i _8 E [aa] E T O L I - n - C = E (] o
0808203 568=05633 TeL208%Y%00a=027 --1.00
o P = A"@F~- ©wwEuwn—- EPLSSTZ S U VS G
Egs2=E0Eosgsh " g& Egs2=Lfogsh " E2&
e T o 3 28 2 S w S Ec*Z G 3 = £ 9 s -
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HM-OT is a Flexible Toolbox for (Co) Clustering

Transfer known clusters forwards Learn cell state/type from scratch
or backwards in time to other data to minimize HM-OT objective

Project or co-cluster cell-types forward and
backward in time through differentiation map




Large-Scale Inference of Differentiation Maps

Lightning fast and space-efficient; can scale maps to millions of points!

Spatial (Stereo-Seq) Mouse Development (Chen et al '22)
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Large-Scale Inference of Differentiation Maps

Urogenital ridge~
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HM-OT moscot spatiotemporal

] | HM-O0T oth . _ _
| B moscot ther true transitions identified:

— * urogenital ridge transitioning to ovary (NPMI = 0.560, E11.5-12.5)

z
“0.4
S

* lung primordium transitioning to lung (NPMI=0.927, E12.5-13.5)

* dermomyotome transitioning to muscle (NPMI=0.968, E11.5-12.5)

0.0 e :| — T * sclerotome transitioning to cartilage primordium (NPMI=0.866, E11.5-12.5)

‘ * surface ectoderm transitioning to the epidermis (NPMI=0.705, E11.5-12.5)

Sclerotome Liver Branchial arch  Connective tissne Brain Cavity Heart Dermomyotome

Spatial (Stereo-Seq) Mouse Development 30



Summary

HM-OT: a scalable algorithm to infer differentiation maps, discover
temporal co-clusters, and track cell-types through time and space.

o HM-OT introduces a novel factorization of optimal transport to model

cell-type differentiation

o Optimizes this factorization across the full time-series of temporal
transcriptomics data

Thank youl!

https://github.com/raphael-group/HM-0OT/

s
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https://github.com/raphael-group/HM-OT/
https://github.com/raphael-group/HM-OT/
https://github.com/raphael-group/HM-OT/
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https://github.com/raphael-group/HM-OT/
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Scaling DeST-OT with low rank optimal transport

Stage E13.5 Stage E14.5

Naot o s .
Noin e =l
\\::g///

77K spots 102K spots

Stereo-seq of mouse embryo
[Chen et al. Cell, 2022]
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