

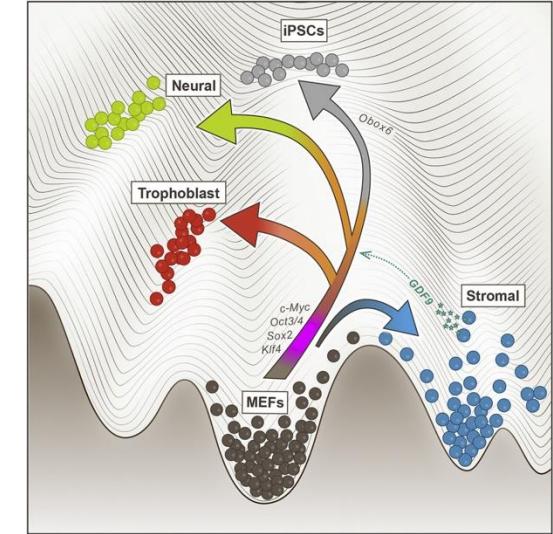
Optimal Transport Modeling of Cellular Differentiation: From Low-Rank Structure to Temporal Dynamics

Speaker: Peter Halmos

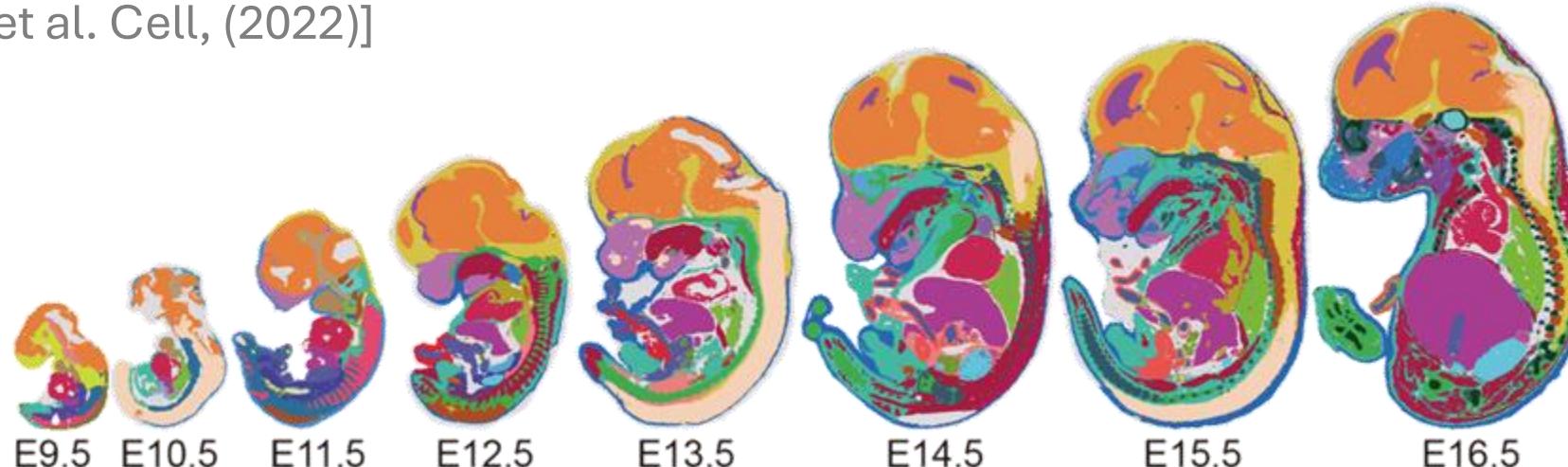
Joint work with Julian Gold, Xinhao Liu, and Ben Raphael

Temporal and Spatiotemporal transcriptomics: Sequencing across multiple time points during developmental and reprogramming processes

Reprogramming of fibroblasts to induced pluripotent stem cells [Schiebinger, et al. Cell, (2019)]



Spatial Transcriptomics of mouse embryos across 8 developmental stages
[Chen, et al. Cell, (2022)]

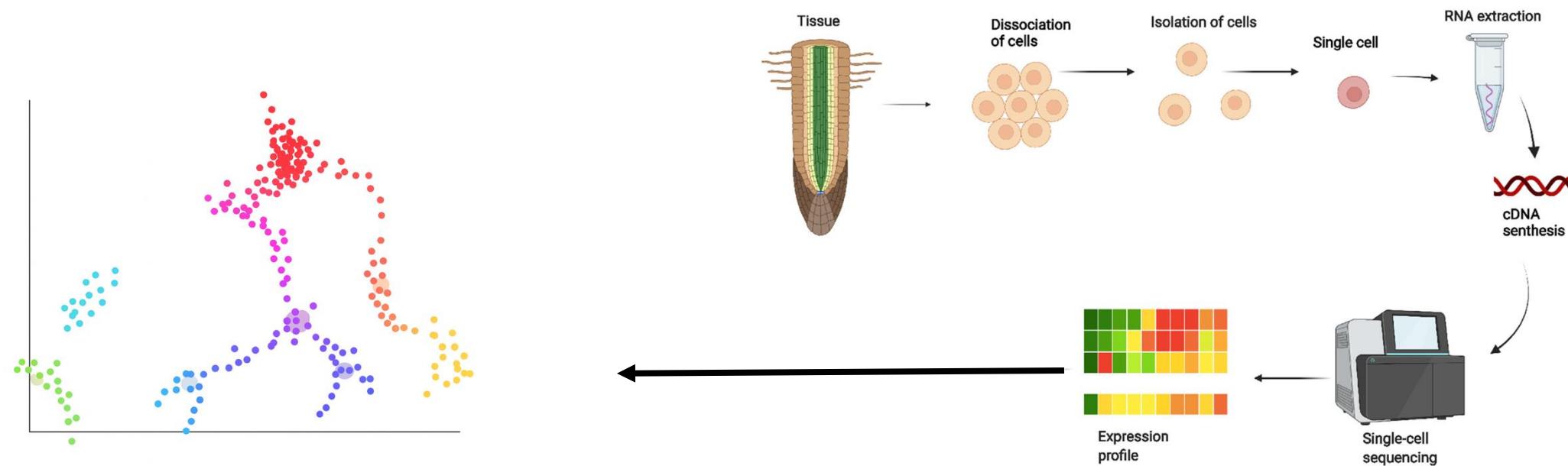


*And others!
(Pijuan-Sala et al.,
Nature, 2019)
(Liu et
al. Developmental
Cell, 2022)

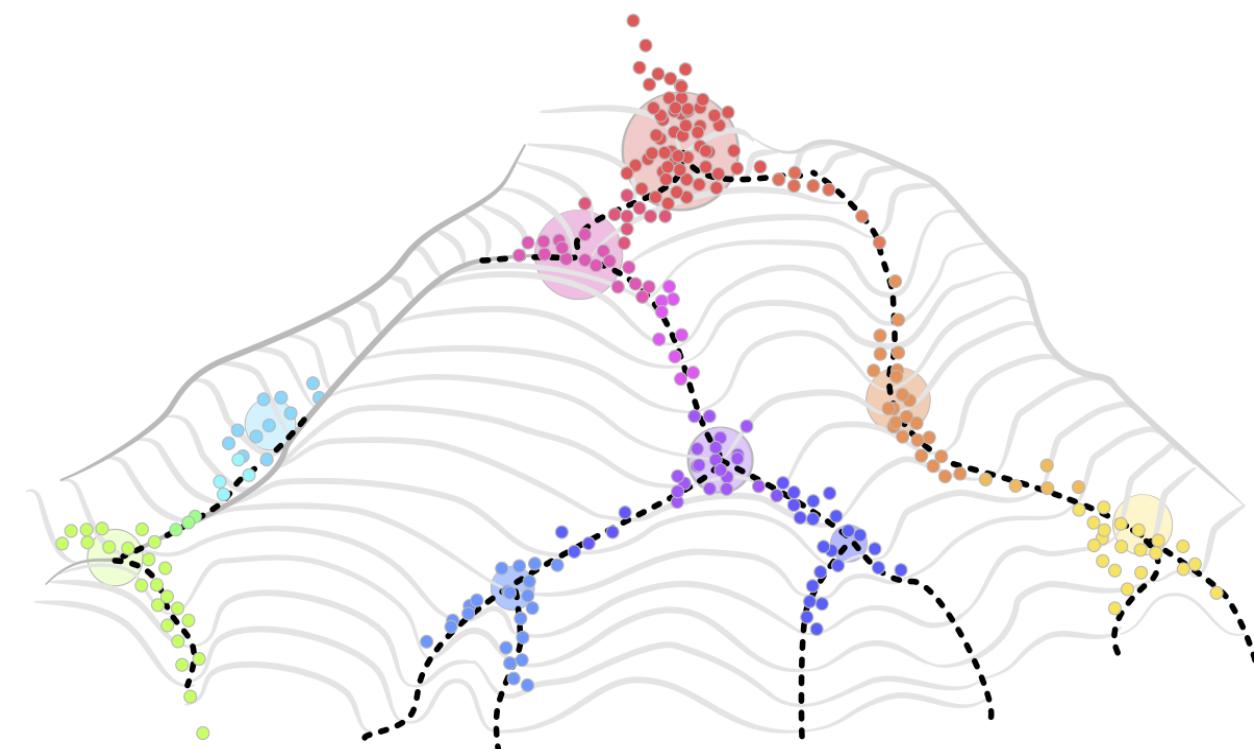
...

Defining Cell State Space

- Two key experimental technologies: **Single-cell transcriptomics** and **Spatial transcriptomics**.
 - **Transcriptomics**: D-dimensional “state-space” of vector with scalar expression of the mRNA for each protein in cell ($= \mathbb{R}^D$)
 - **Single cell**: Cell i is its transcriptional state $X^{(i)} \in \mathbb{R}^D$
 - **Spatial transcriptomics**: Cell i is its transcriptional state $X^{(i)} \in \mathbb{R}^D$ augmented with a spatial position $s^{(i)} \in \mathbb{R}^2$ or 3



Temporal and Spatiotemporal transcriptomics: Opens the Analysis of Fundamental Biological Questions!



The "Waddington Landscape"

Questions:

1. Ancestor-descendant relationships between cells across two timepoints?
2. Cell-states or types which index the temporal process of development?
3. Trajectories between these cell types?

Limitations:

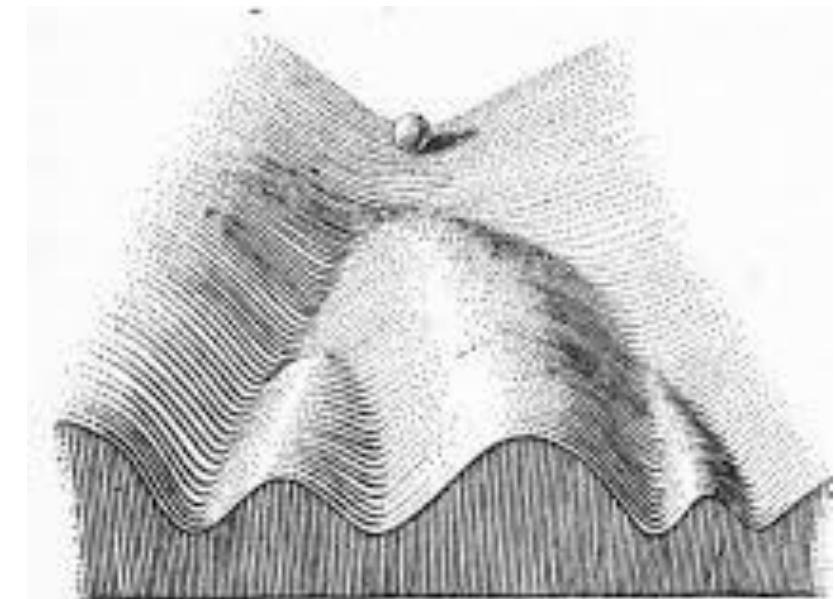
- Technology is destructive – each sample from a different individual
- Do not have ground-truth trajectories!

Waddington Potential Landscape

- What's a reasonable modeling assumption for how cells evolve?
- In *The Strategy of the Genes* '57, C.H. Waddington Conjectured:
 - Cell differentiation pathways \approx A gradient-flow on a potential landscape

i.e. minimize $V(x)$ via dissipative descent:

$$\dot{x} = -\nabla V(x)$$



The "Waddington Landscape"
Photo cred: (Waddington, 1957)

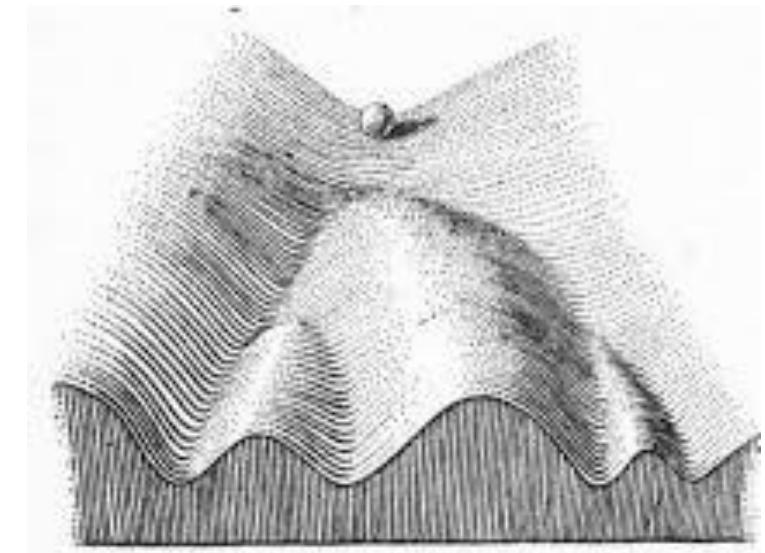
Waddington Potential+ Landscape

- Since we observe cell distribution marginals at different time-points $\rho_t(x)$ with stochasticity, one needs to augment the particle-flow view!
- This can be viewed as a descent over the particle-distribution $\rho_t(x)$ itself with Langevin dynamics ([Biondo '25](#), [Lavenant & Schiebinger '21](#))

Continuity-equation: probability mass
(rather than points) flows down landscape

$$\partial_t \rho_t = \nabla \cdot (\rho_t \nabla V) + T \Delta \rho_t$$

$$dX_t = -\nabla V(x)dt + \sqrt{2T}dB_t$$



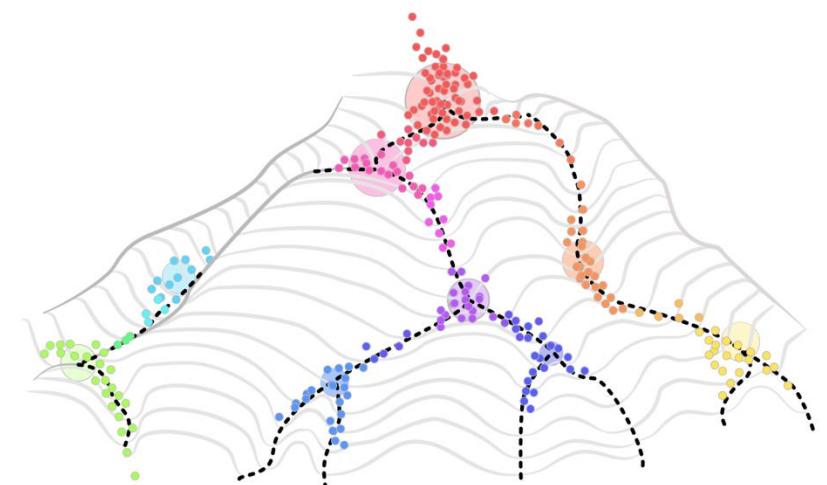
Resolving Trajectories on the Landscape

- There are a few practical difficulties with applying this model:
 1. We do not know the landscape a priori
 2. We only observe discrete “snapshots”

$$\left(\rho_t = \frac{1}{n_t} \sum_{i=1}^{n_t} \delta_{x_i} \right)_{t=1}^N$$

generated from the unknown landscape.

- 3. Without the landscape, we do not know which cells transitioned to which!

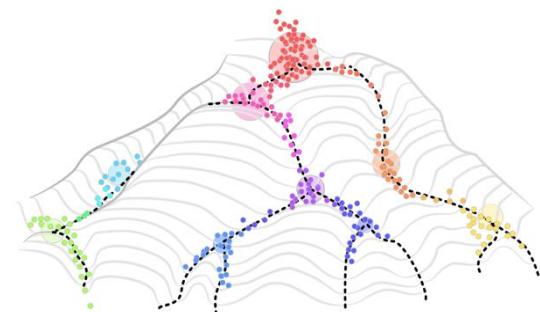


Resolving Trajectories on the Landscape

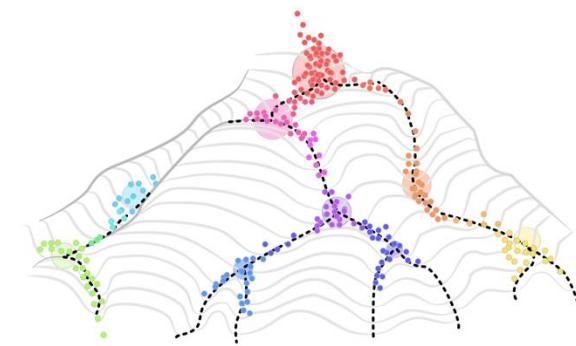
- Let's look at a pair of densities ρ_0, ρ_1 and apply Occam's Razor to the velocities which can take $\rho_0 \rightarrow \rho_1$:

Q: What is the time-varying distribution ρ_t and velocity field v_t of **least kinetic energy** between the two distributions?

$$\inf_{(\rho_t, v_t)} \left\{ \int_0^1 \int_{\mathbb{R}^d} \|v_t\|_2^2 \rho_t(dx) \mid \partial_t \rho_t = -\nabla \cdot (\rho_t v_t), \rho_0 = \rho_{t=0}, \rho_1 = \rho_{t=1} \right\}$$



Solution: Optimal Transport!



- **(Benamou & Brenier, 2000):** The minimal kinetic energy value for this probability-flow is the Wasserstein distance of optimal transport (OT)

$$\inf_{(\rho_t, v_t)} \left\{ \int_0^1 \int_{\mathbb{R}^d} \|v_t\|_2^2 \rho_t(dx) \mid \partial_t \rho_t = -\nabla \cdot (\rho_t v_t), \rho_0 = \rho_{t=0}, \rho_1 = \rho_{t=1} \right\} \\ = W_2^2(\rho_0, \rho_1) !$$

- The optimal velocity field is given by the transport map! We can **just** solve for OT velocity directly. Coincides with gradient flow velocity in limit of taking the time-interval to zero (**Jordan, Kinderlehrer & Otto, '98**): discrete OT on fine time-intervals can recover any dynamics.

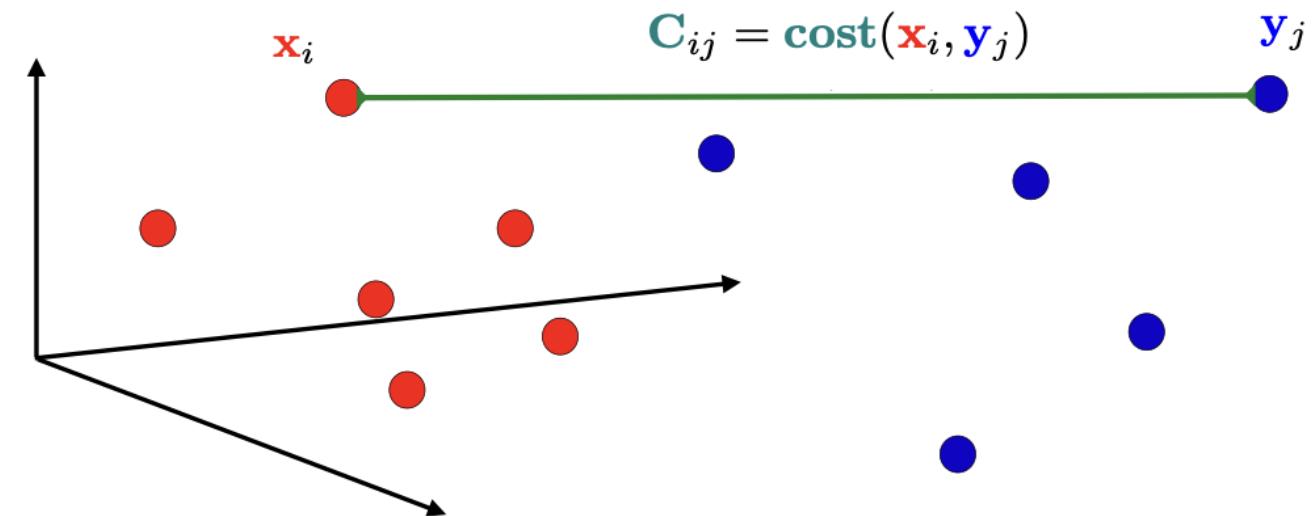
Conclusion: OT is “*most natural*” choice!

Discrete Optimal Transport

- Practically, when $\rho_0 = \sum_{i=1}^{n_0} \mathbf{a}_i \delta_{x_i}$ and $\rho_1 = \sum_{j=1}^{n_1} \mathbf{b}_j \delta_{y_j}$, (usually uniform), OT is solved by the discrete optimization problem:

$$\mathbf{P}^* = \underset{\mathbf{P} \in \Pi(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \langle \mathbf{C}, \mathbf{P} \rangle$$

$$= \underset{\mathbf{P} \in \Pi(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \sum_{i,j} \mathbf{C}_{ij} \mathbf{P}_{ij}$$

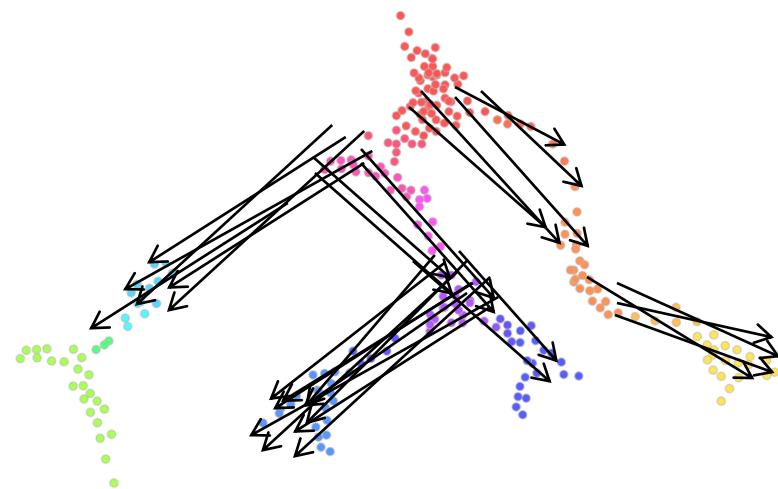


$$\Pi(\mathbf{a}, \mathbf{b}) = \{ \mathbf{P} \in \mathbb{R}_+^{n \times m} : \mathbf{P} \mathbf{1}_m = \mathbf{a}, \mathbf{P}^T \mathbf{1}_n = \mathbf{b} \}$$

Existing Techniques for Optimal Transport

- Many existing methods map the time-dynamics of cells using variations of optimal transport (Schiebinger et al 2019, Zeira et al 2022, Klein et al 2025, Liu & Halmos et al 2025) with great success
- However, they infer full-rank structure through cell-cell couplings, as opposed to *low-rank* structures in the mapping

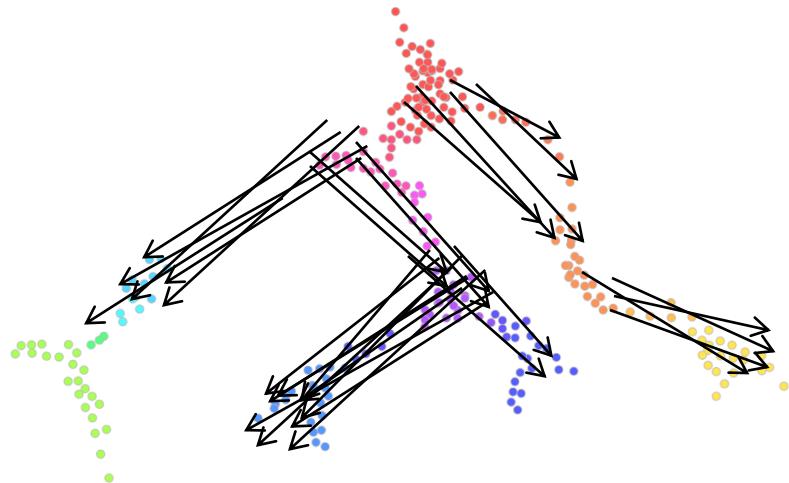
Cell-to-cell Coupling: Full-rank structure



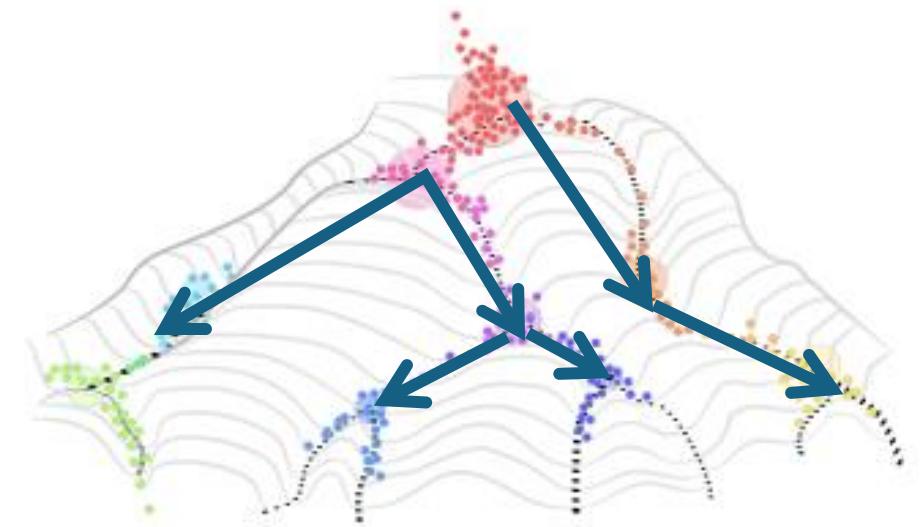
Low-Rank Structure in the Transport

- OT maps (without entropy regularization) are bijections
- No true low-rank structure and *flat* spectrum of singular values = 1!

Cell-to-cell Coupling: Full-rank structure

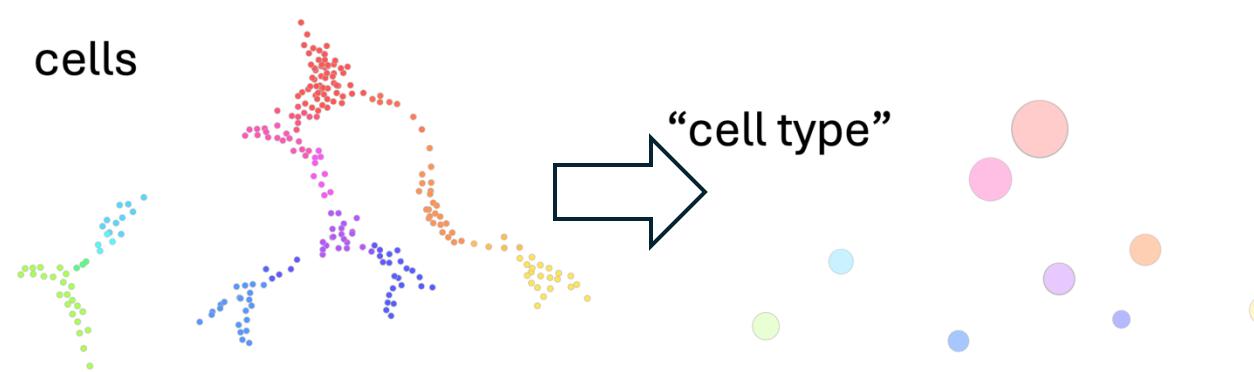


Latent Trajectories: *Low-Rank* Structure

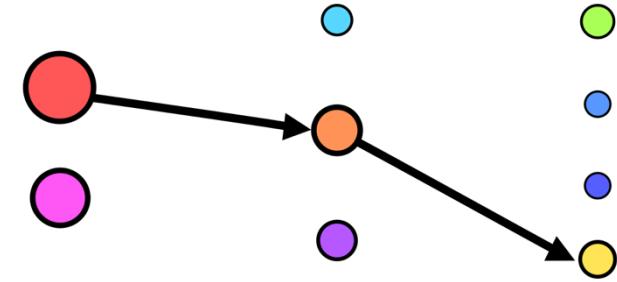


Low-Rank Structure in the Transport

- Examples of low-rank structure in the transport include latent cell-state and the *differentiation map* between these states
 - The “canals” or “latent-trajectories” of Waddington’s landscape are **low-rank** structures!
- Existing techniques assume cell-state inference is *distinct* from transport and don’t bridge the two.



A *cell-type* is a coarse-graining of cells into clusters.

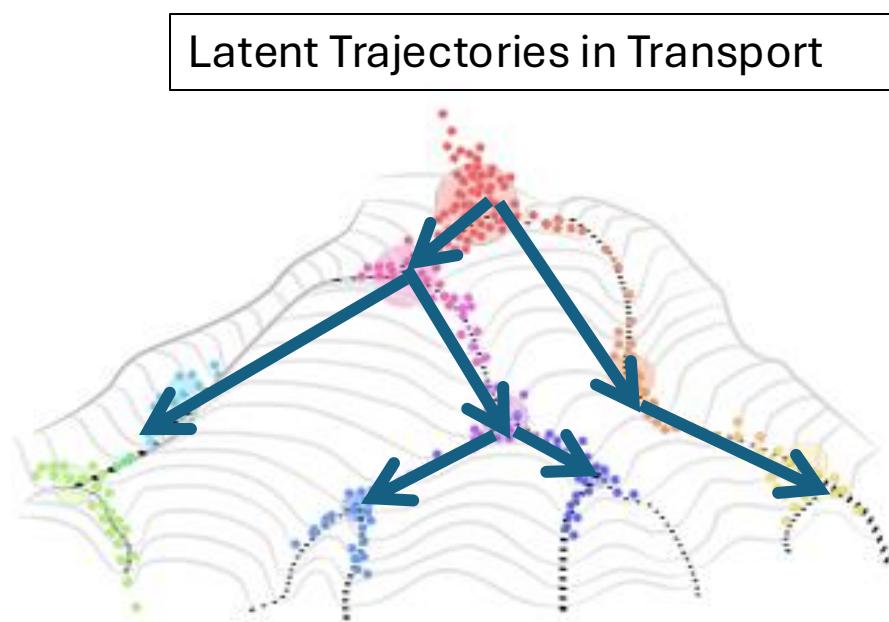
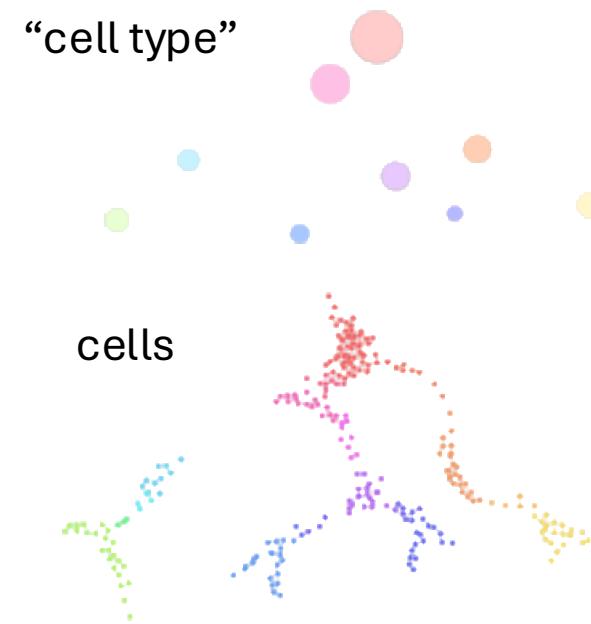


A *differentiation map* is a directed acyclic graph giving the ancestral relationship between cell-types.

Latent Trajectories over Cell-State

Our work addresses the following questions:

1. What cell-states "index" the temporal development process?
2. What is the *differentiation map* (DAG) between these cell states?

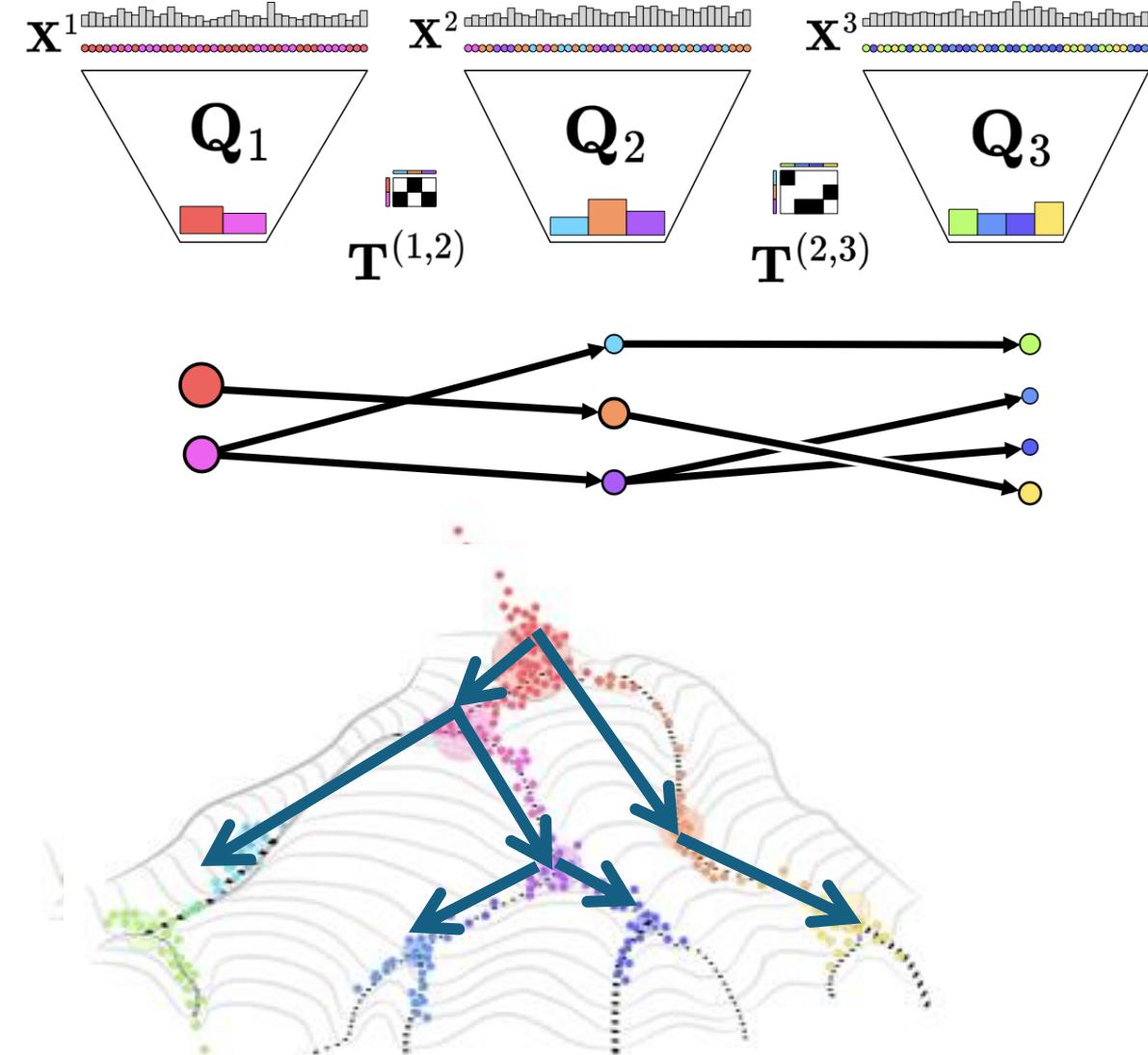


Hidden Markov Optimal Transport (HM-OT)

(1) Discovers latent cell types and aligns individual cells to them.

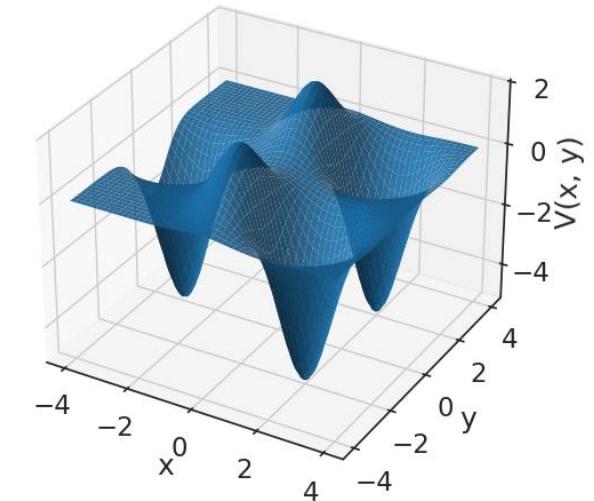
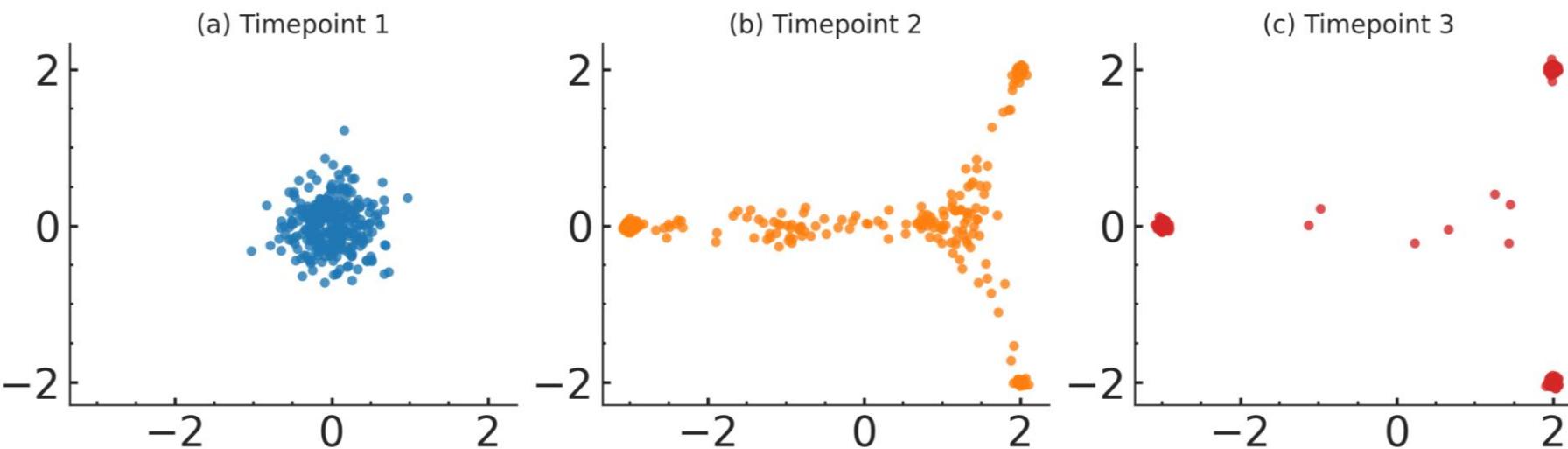
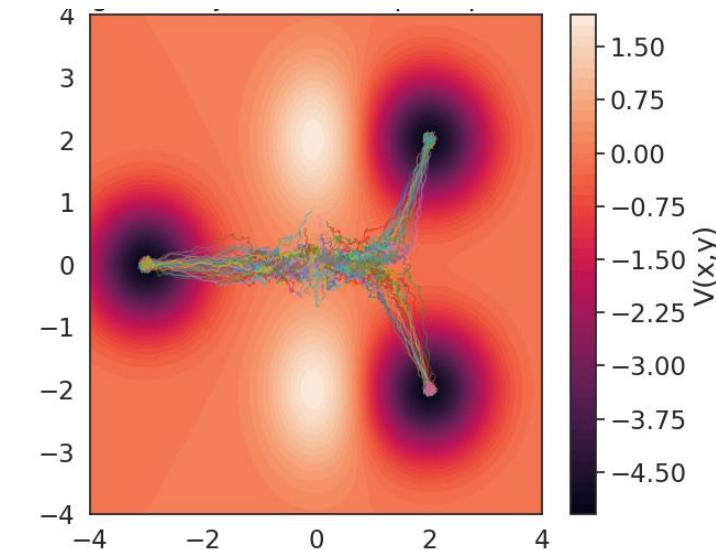
(2) Maps between the cell types while minimizing an optimal transport cost.

(3) Uses *low-rank optimal transport* (Forrow et al '19, Scetbon et al '20, Lin et al '21, Halmos et al '24) to do (1) and (2) simultaneously across multiple timepoints.



Example: Langevin on Tristable Potential

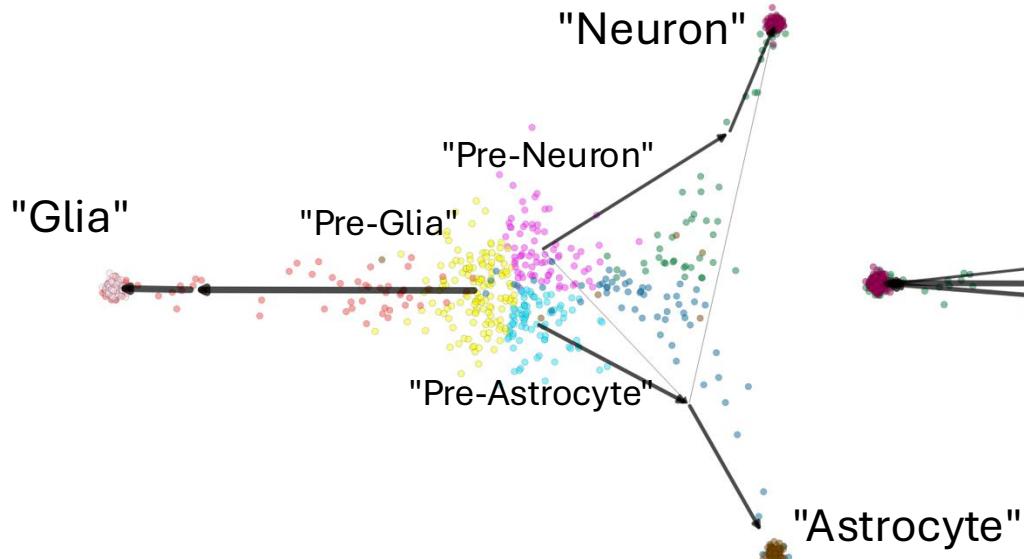
- Existing techniques assume cell-state inference is *distinct* from transport. *Where does this go wrong?*
- Suppose cells follow Langevin on a tristable landscape (**Bhattacharya '11**) and we measure trajectories at 3 timepoints



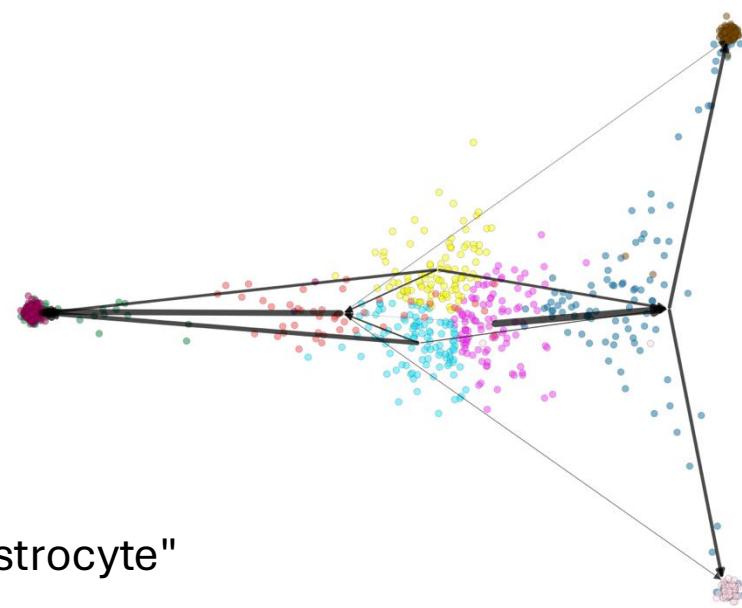
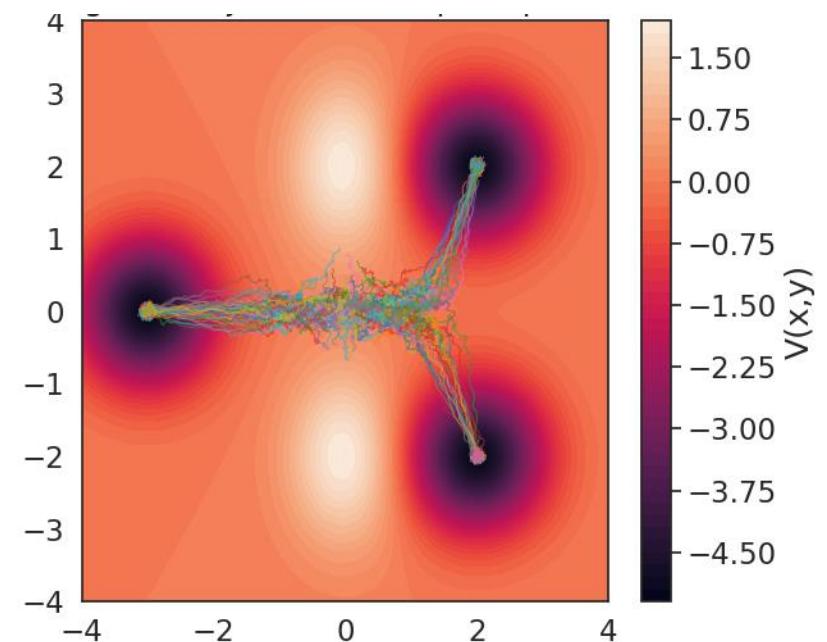
Example: Langevin on Tristable Potential

- Clustering at each timepoint independently + full-rank OT fails to identify the three true latent trajectories on the tri-stable landscape.
- Latent trajectories must be optimized *jointly* with the transport!

Hidden-Markov OT (HM-OT)



Clustering + Full-rank OT



Low-rank OT: Latent Structure in Transport

- A rank- r coupling P may always be represented (Scetbon '21, Cohen & Rothblum) by the factorization

$$P = Q \text{diag}(g^{-1}) R^\top$$

- *Low-rank* optimal transport (Farrow '19, Scetbon '21) solves primal OT with this factorization

(Parametrization)

$$P = Q \text{diag}(1/g) R^\top$$

(Loss)

$$\mathcal{L}_{\text{LOT}} := \langle C, Q \text{diag}(1/g) R^\top \rangle$$

(Constraints) $\text{FC}_{a,b}(r) := \{(Q, R, g) \in \mathbb{R}_+^{n \times r} \times \mathbb{R}_+^{m \times r} \times (\mathbb{R}_+^*)^r : Q \in \Pi_{a,g}, R \in \Pi_{b,g}\}$

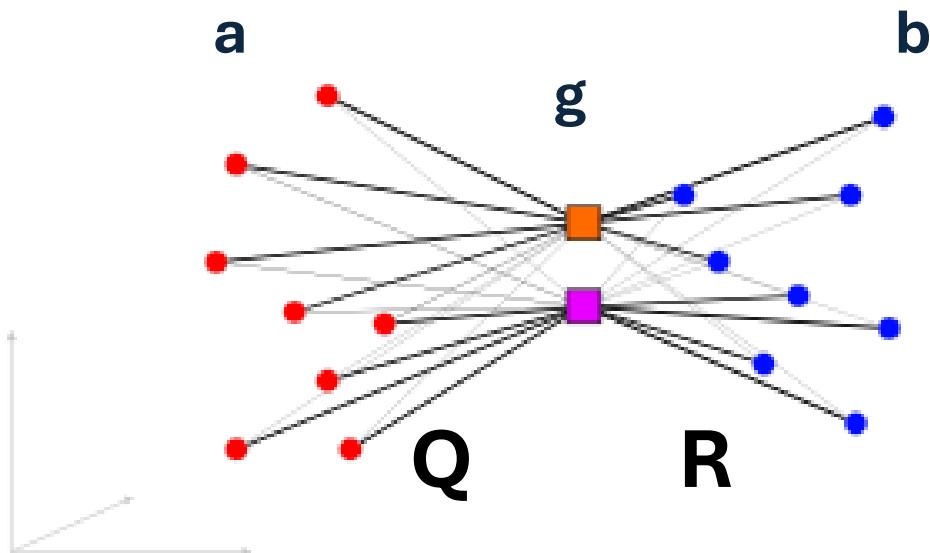
Low-rank OT: Latent Structure in Transport

$$\mathbf{P} = \mathbf{Q} \text{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top$$

“Outer marginal:” the points

$$\mathbf{Q} \mathbf{1}_r = \mathbf{a}, \mathbf{R} \mathbf{1}_r = \mathbf{b}$$

Low-rank OT

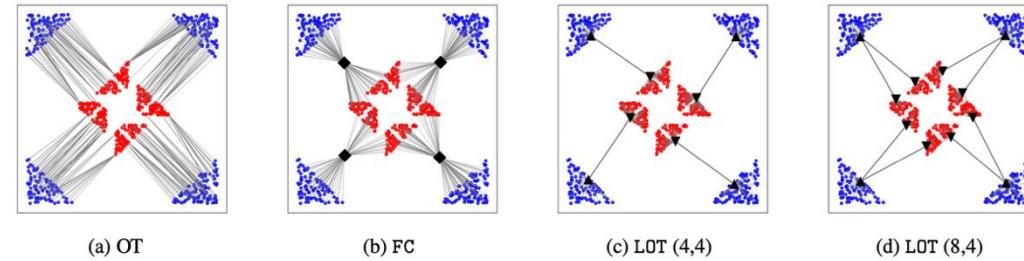


“Inner marginal:” the latent co-clusters

$$\mathbf{g} = \mathbf{Q}^\top \mathbf{1}_n = \mathbf{R}^\top \mathbf{1}_n$$

Low-rank OT: key benefits

1. It captures **latent, interpretable** structure in the transport (Forrow '19, Lin '21) with *linear* complexity.
2. It offers a framework for ***co-clustering*** and generalizes K-means to a pair of datasets (Scetbon '22).
3. Full-rank OT ***can reduce to*** low-rank OT with linear space and **$O(n \log n)$ time*** with Hierarchical Refinement (Halmos&Gold, ICML '25).

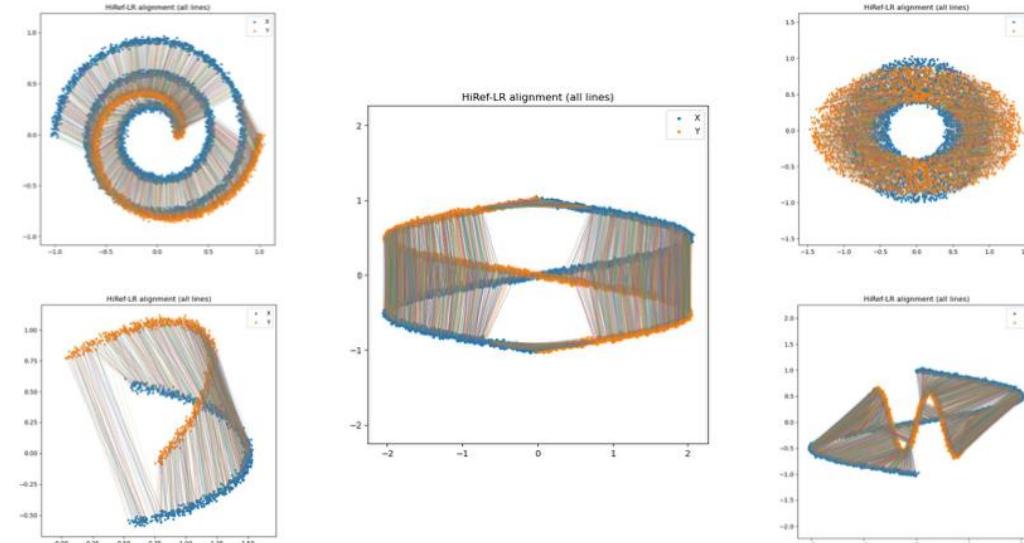
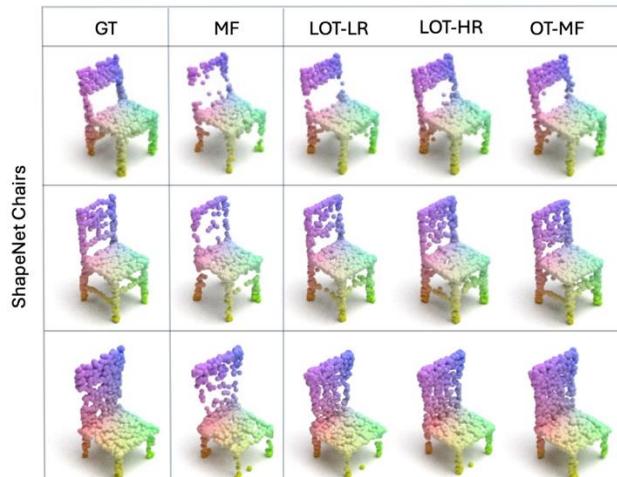


(a) OT

(b) FC

(c) LOT (4,4)

(d) LOT (8,4)



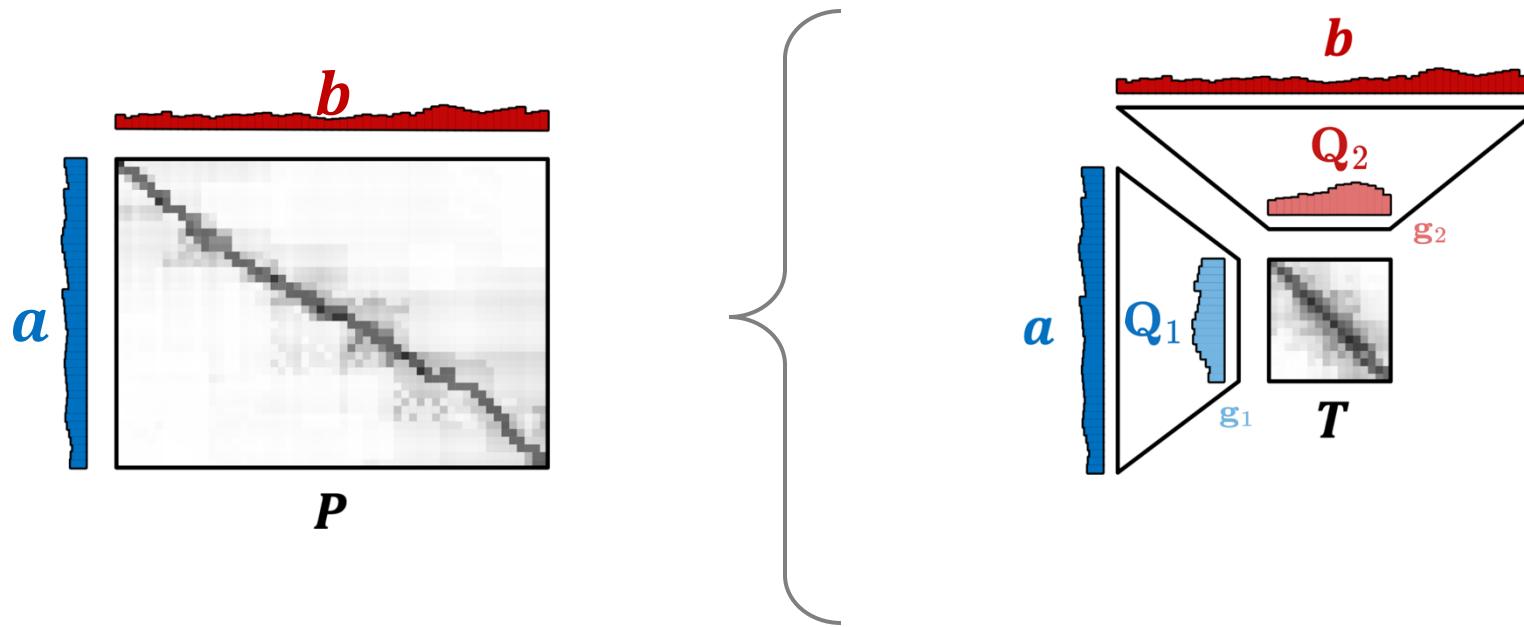
Low-rank Optimal Transport

- One issue with this factorization: It does not account for hidden transition or DAG structure!

$$\mathbf{P} = \mathbf{Q} \text{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top$$



Low-Rank Optimal Transport with Latent Coupling: A Special Parametrization

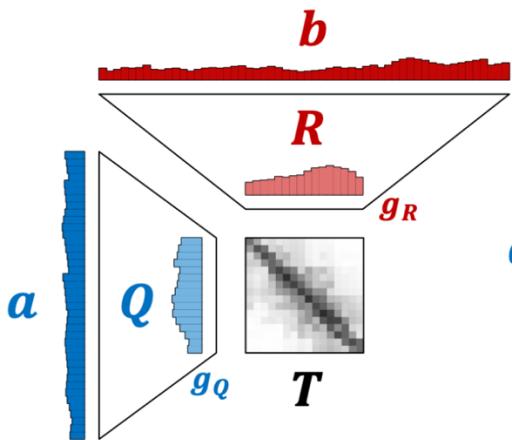


Factor relaxation with latent coupling (FRLC)

Low rank approximation of optimal transport

Halmos*, Liu*, Gold*, R. NeurIPS (2024)

Factor-Relaxation and Latent Coupling



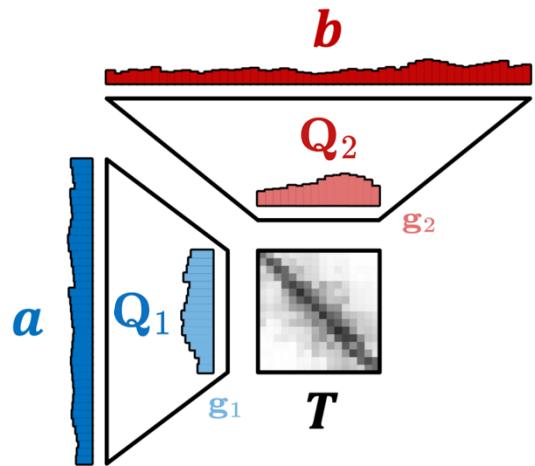
- LC (latent coupling) parametrization decouples problem using coordinate mirror-descent, with the introduction of a *latent coupling* \mathbf{T} between two inner marginals \mathbf{g}_Q and \mathbf{g}_R

(Parametrization) $\mathbf{Q} \text{diag}(1/\mathbf{g}_Q) \mathbf{T} \text{diag}(1/\mathbf{g}_R) \mathbf{R}^T =: \mathbf{P}_{(Q, R, T)}$

(Loss) $\mathcal{L}_{\text{LC}}(\mathbf{Q}, \mathbf{R}, \mathbf{T}) := \langle \mathbf{C}, \mathbf{P}_{(Q, R, T)} \rangle_F,$

(Constraints) $\text{LC}_{\mathbf{a}, \mathbf{b}}(r) := \{(\mathbf{Q}, \mathbf{R}, \mathbf{T}) \in \mathbb{R}_+^{n \times r} \times \mathbb{R}_+^{m \times r} \times \mathbb{R}_+^{r \times r} : \mathbf{Q} \in \Pi_{\mathbf{a}, \cdot}, \mathbf{R} \in \Pi_{\mathbf{b}, \cdot}, \mathbf{T} \in \Pi_{\mathbf{g}_Q, \mathbf{g}_R}\}$

Factor-Relaxation and Latent Coupling (Algorithm)



Factor relaxation with latent coupling (FRLC)

Low rank approximation of optimal transport

Halmos*, Liu*, Gold*, R. NeurIPS (2024)

$$\begin{aligned} \mathbf{Q}_k &\leftarrow \tilde{\Pi}_{\mathbf{a}, \mathbf{g}_Q} (\mathbf{Q}_k \odot \exp(-\gamma_k \nabla_{\mathbf{Q}})) \\ \mathbf{R}_k &\leftarrow \tilde{\Pi}_{\mathbf{b}, \mathbf{g}_R} (\mathbf{R}_k \odot \exp(-\gamma_k \nabla_{\mathbf{R}})) \\ \mathbf{g}_Q, \mathbf{g}_R &= \mathbf{Q}_k^T \mathbf{1}_n, \mathbf{R}_k^T \mathbf{1}_m \\ \mathbf{T}_k &\leftarrow \Pi_{\mathbf{g}_R, \mathbf{g}_Q} (\mathbf{T}_k \odot \exp(-\gamma_T \nabla_{\mathbf{T}})) \end{aligned}$$

Efficiently solved with Mirror-Descent:
alternating Sinkhorn projections!

Interpretation of Latent Coupling

LC (latent coupling) factorization of P imposes *rank constraint* and decomposes P into 3 factors while keeping it a feasible coupling

$$\implies P = Q_1 \text{diag}(1/g_1) T \text{diag}(1/g_2) Q_2^T$$

$$Q_1 \in \Pi(a, g_1)$$

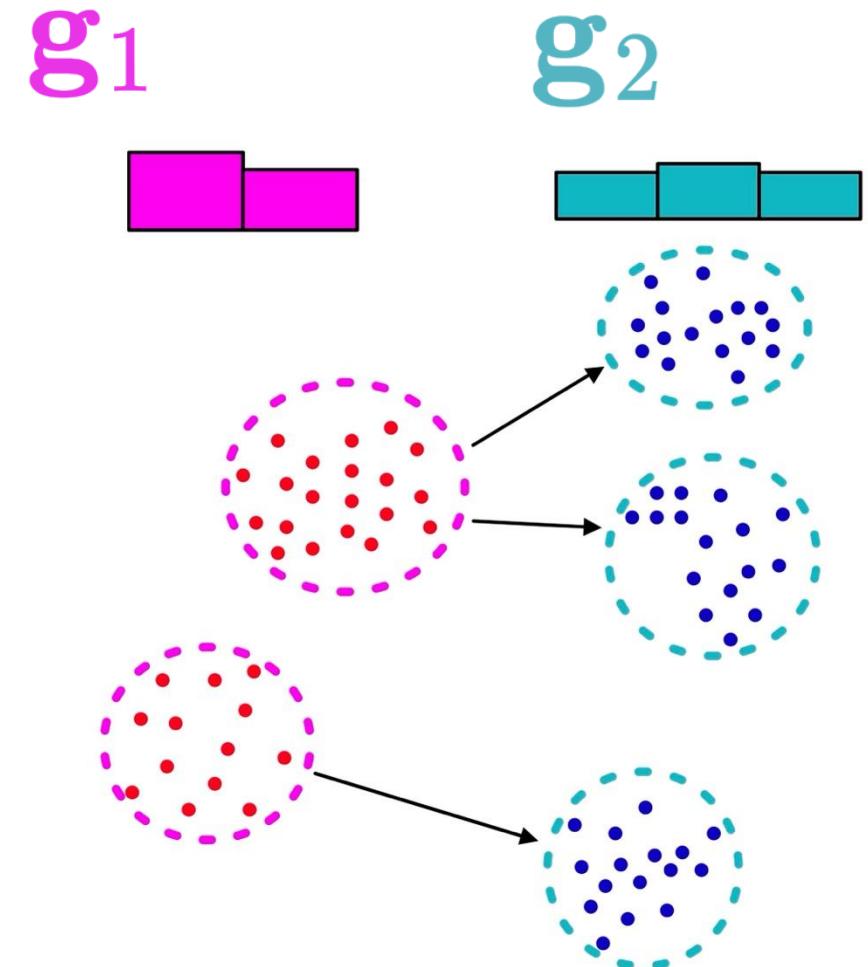
Couples point distribution at time 1 to cell-state distribution at time 1

$$T \in \Pi(g_1, g_2)$$

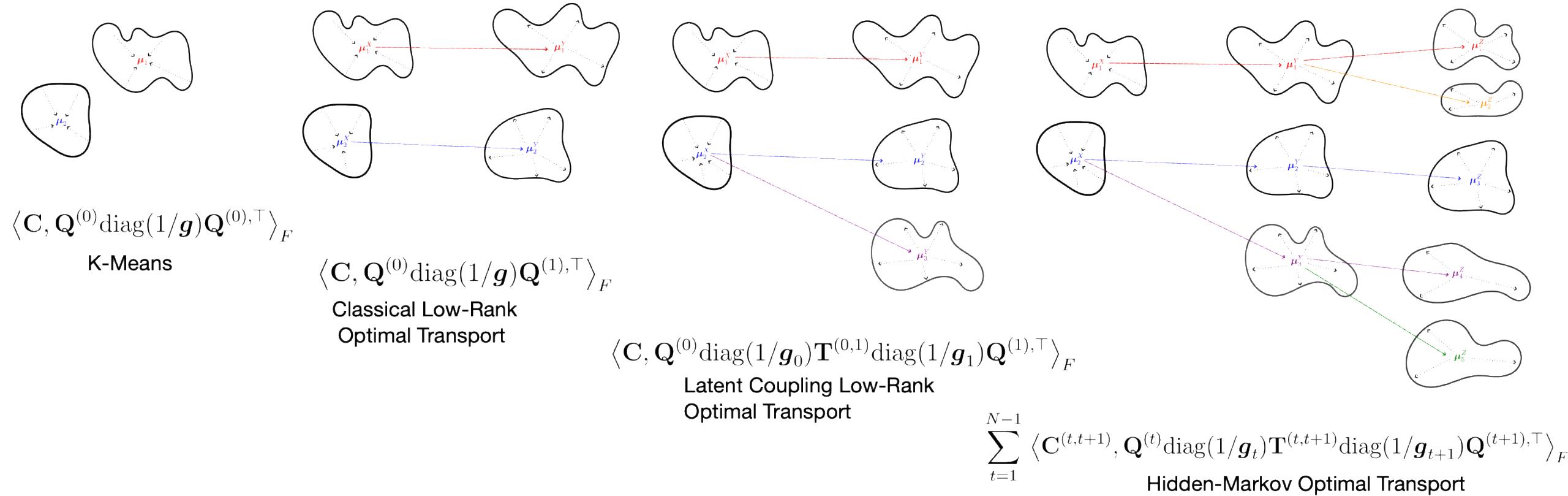
Couples cell-type distribution at time 1 to cell-state distribution at time 2

$$Q_2^T \in \Pi(g_2, b)$$

Couples cell-state distribution at time 2 to point distribution at time 2



Hidden-Markov OT: Linking Latent Trajectories *Through Time*



Hidden-Markov Optimal Transport

- The key idea of HM-OT is to (1) use the latent-coupling parametrization to capture cell differentiation and transitions, and (2) extend the loss function of low-rank OT to account for many timepoints
- Introduce cells encoded as distributions \mathbf{a}_t , cell-type vectors \mathbf{g}_t , and a coupling (latent representation) between these cells and their types \mathbf{Q}_t

Parametrization and constraints are same as FRLC, but with time index!

(Parametrization)	$\mathbf{P}^{(t,t+1)} := \mathbf{Q}_t \text{diag}(1/\mathbf{g}_t) \mathbf{T}^{(t,t+1)} \text{diag}(1/\mathbf{g}_{t+1}) \mathbf{Q}_{t+1}^T$
(Constraints)	$\mathbf{LC}_{\mathbf{a}_t, \mathbf{a}_{t+1}}(r_t, r_{t+1})$

Hidden-Markov Optimal Transport

- The factors need to be *linked* across time for cell-state to be defined consistently: multi-marginal extension of low-rank OT
- Cost minimizes the global distance of latent trajectories across time

Different loss! Generalized and linked across many timepoints.

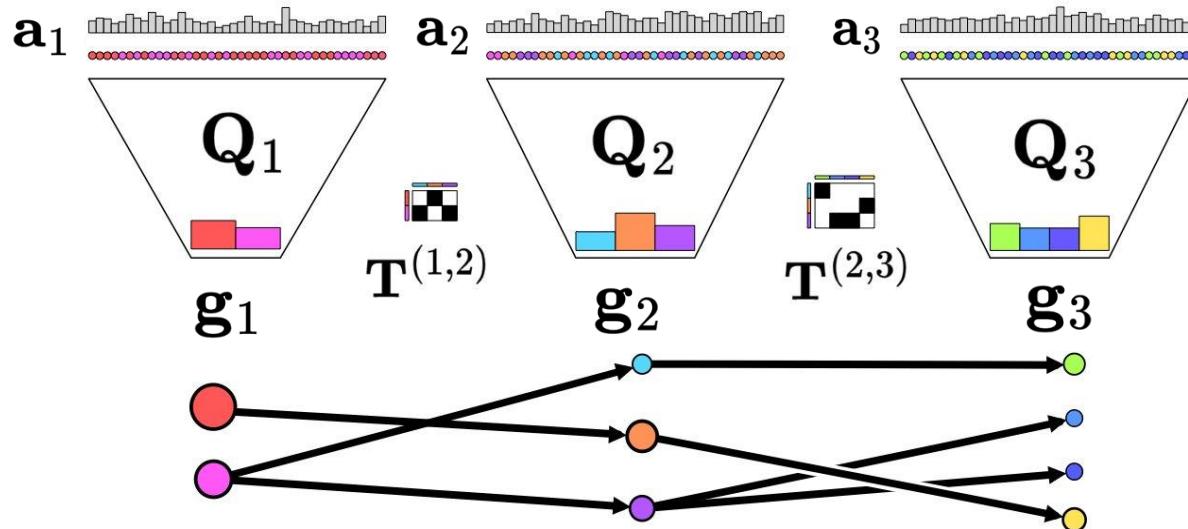
$$\text{(Loss)} \quad \min_{\mathbf{Q}, \mathbf{T} : (\mathbf{Q}_t, \mathbf{Q}_{t+1}, \mathbf{T}^{(t,t+1)}) \in \mathbf{LC}_{\mathbf{a}_t, \mathbf{a}_{t+1}}(r_t, r_{t+1})} \sum_{t=1}^{N-1} \langle \mathbf{C}^{(t,t+1)}, \mathbf{P}^{(t,t+1)} \rangle_F$$

Hidden-Markov Optimal Transport

Problem: Given empirical distributions $(\mathbf{a}_t)_{t=1,\dots,N}$ find the latent factors $(\mathbf{Q}_t)_{t=1,\dots,N}$ and differentiation maps $(\mathbf{T}^{(t,t+1)})_{t=1,\dots,N-1}$ that minimize the Wasserstein cost of the latent states through time.

$$\min_{\mathbf{Q}, \mathbf{T} : (\mathbf{Q}_t, \mathbf{Q}_{t+1}, \mathbf{T}^{(t,t+1)}) \in \text{LC}_{\mathbf{a}_t, \mathbf{a}_{t+1}}(r_t, r_{t+1})} \sum_{t=1}^{N-1} \langle \mathbf{C}^{(t,t+1)}, \mathbf{P}^{(t,t+1)} \rangle_F$$

$$\mathbf{P}^{(t,t+1)} := \mathbf{Q}_t \text{diag}(1/\mathbf{g}_t) \mathbf{T}^{(t,t+1)} \text{diag}(1/\mathbf{g}_{t+1}) \mathbf{Q}_{t+1}^T$$



Hidden-Markov OT (Algorithm)

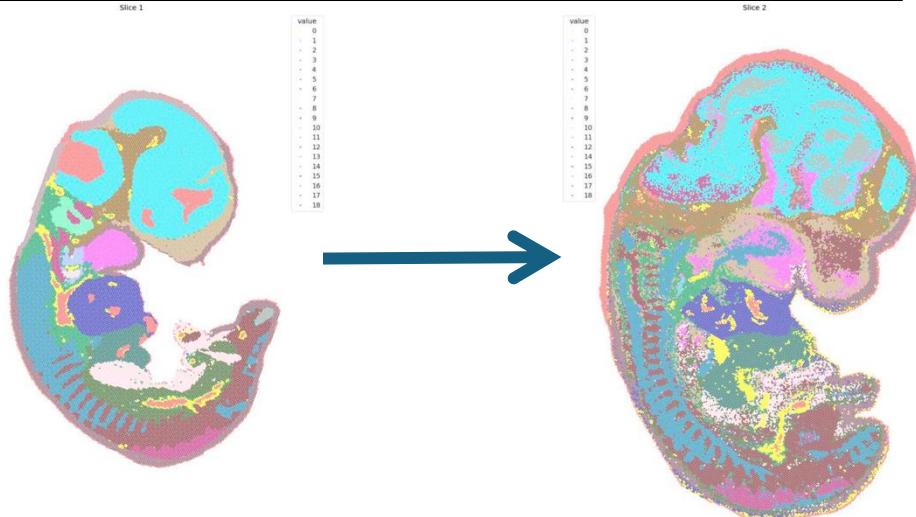
- Decouples sequential problem in time into greedy Forward-Backward estimates of $(Q_t, T^{(t,t+1)}, g_t)$ which are solved with FRLC.
- Decoupling is like the forward-backward algorithm for Hidden Markov Models (HMM)

Hidden-Markov OT (Flexibility)

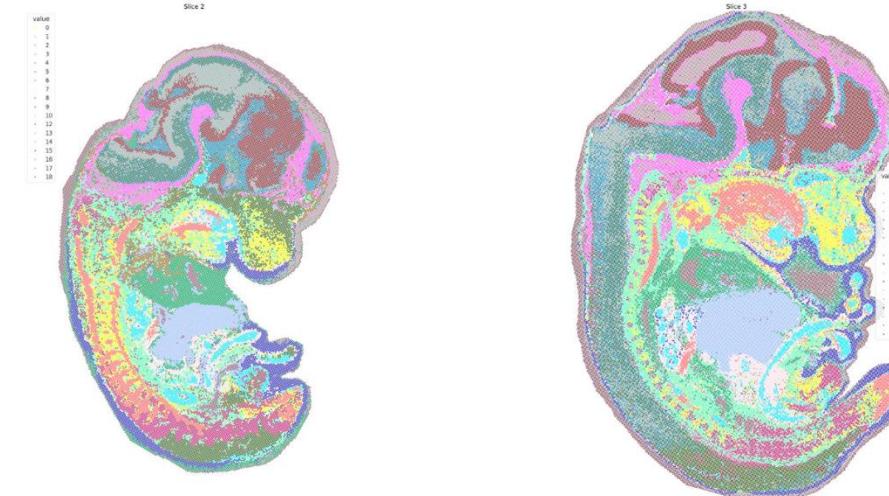
- Highly flexible in terms of input information! One can either run fully unsupervised or constrain any subset of the variables:
 - Cell-type proportions (g_t)
 - Cell to cell-type assignments (Q_t)
 - Cell-type to cell-type (e.g. lineage) transition structure ($T^{(t,t+1)}$)

HM-OT: Flexible Toolbox for (Co) Clustering

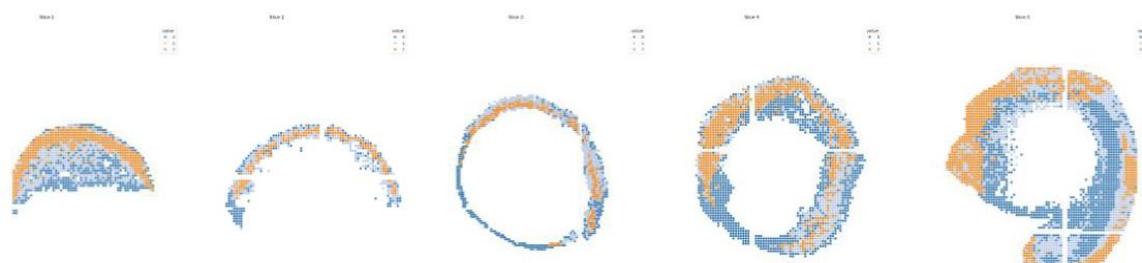
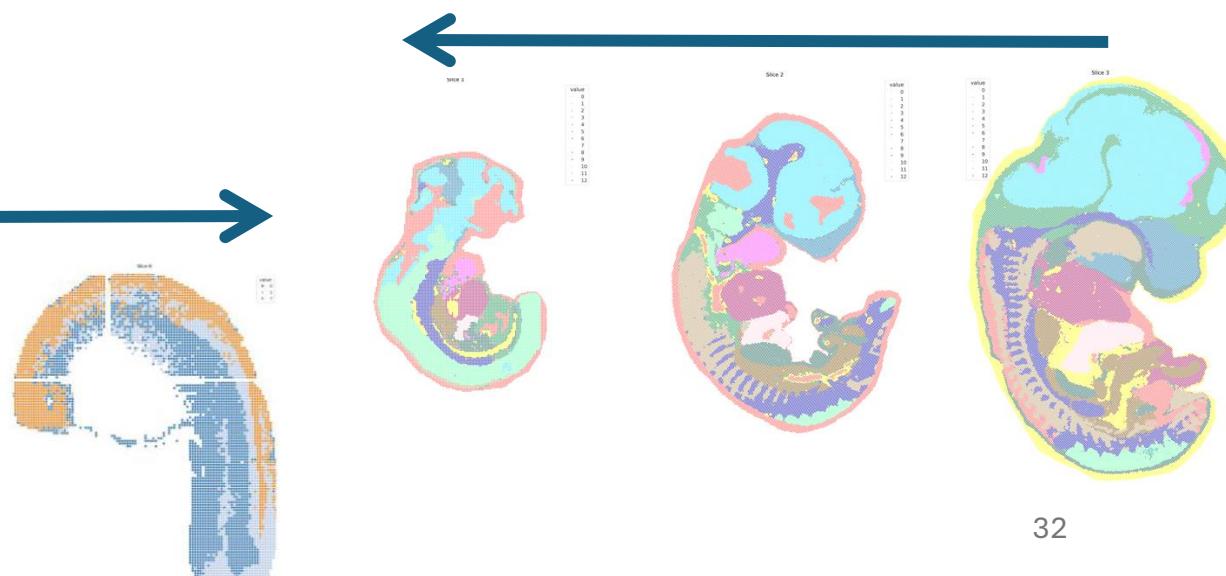
Transfer known clusters forwards or backwards in time to other data



Learn cell state/type from scratch to minimize HM-OT objective



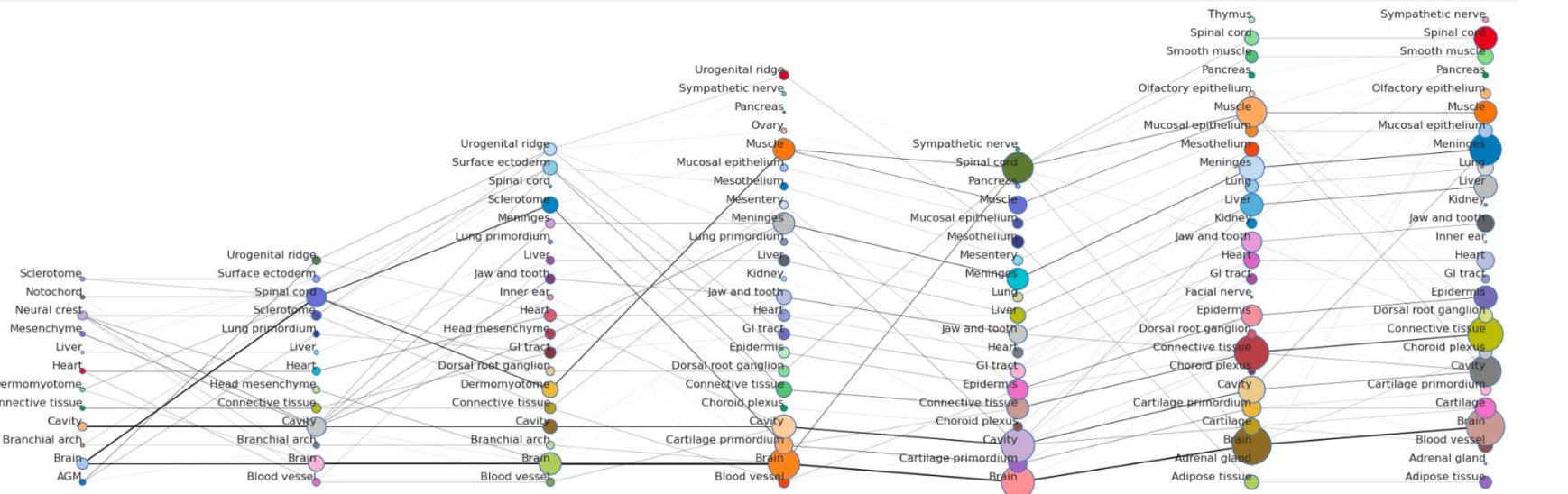
Project or co-cluster cell-types forward and backward in time through differentiation map



Large-Scale Inference of Differentiation Maps

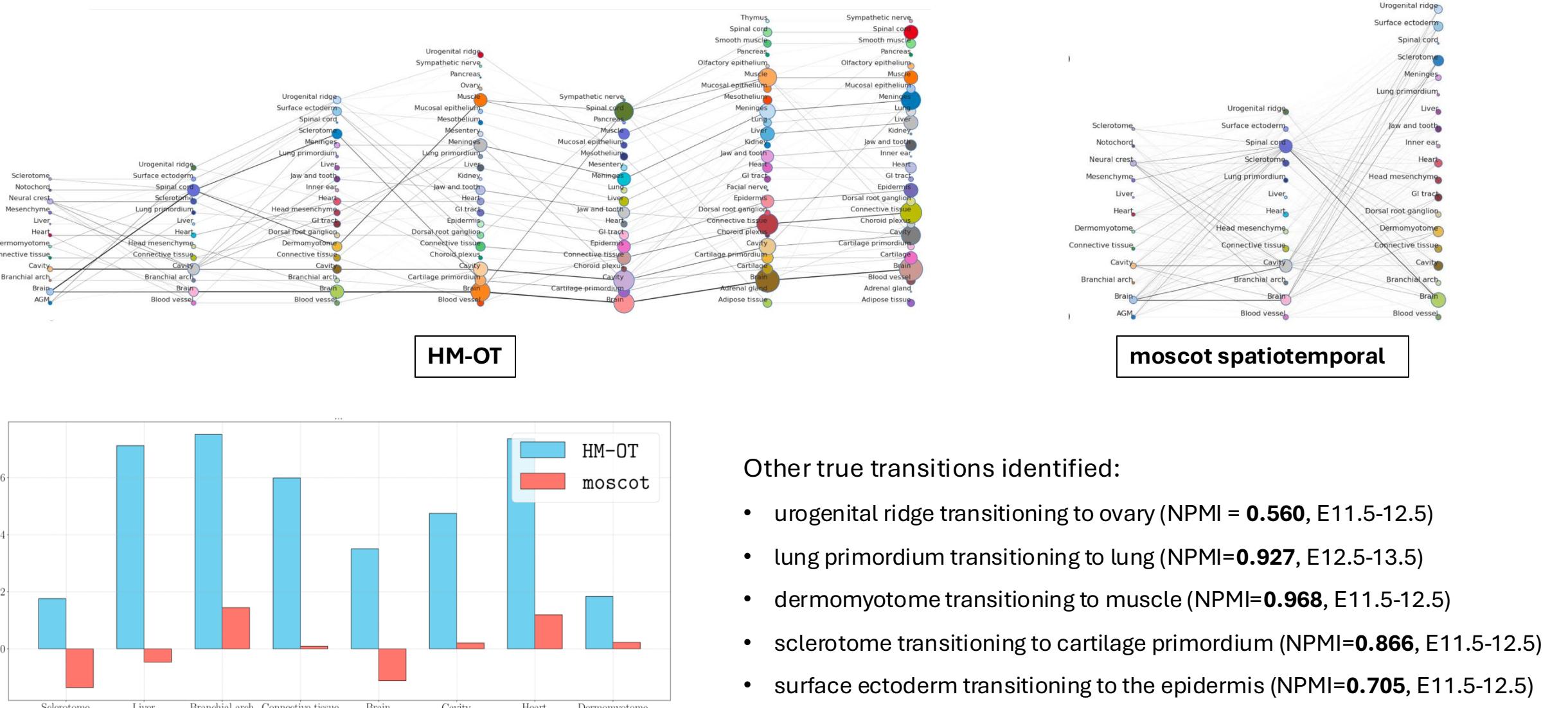
Lightning fast and space-efficient; can scale maps to millions of points!

Spatial (Stereo-Seq) Mouse Development (Chen et al '22)



Temporal (Single-Cell) Mouse Embryogenesis (Qiu et al '24)

Large-Scale Inference of Differentiation Maps



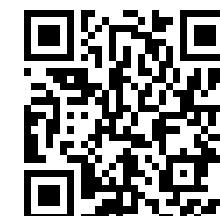
Summary

HM-OT: a scalable algorithm to infer differentiation maps, discover temporal co-clusters, and track cell-types through time and space.

- HM-OT introduces a novel multi-marginal optimal transport formulation to map cell-type differentiation
- Optimizes this factorization across a full time-series of temporal transcriptomics (or other!) data

<https://github.com/raphael-group/HM-OT/>

Thank you!



Acknowledgments

Raphael Group

Prof. Ben Raphael

Dr. Brian Arnold

Dr. Metin Balaban

Dr. Uthsav Chitra

Dr. Julian Gold

Dr. Cong Ma

Dr. Uyen Mai

Dr. Hirak Sarkar

Dr. Palash Sashittal

Dr. Yihang Shen

Dr. Alexander Strzalkowski

Dr. Hongyu Zheng

Viola Chen

Gillian Chu

Peter Halmos

William Howard-Snyder

Gary Hu

Akhil Jakatdar

Xinhao Liu

Sereno Lopez-Darwin

Henri Schmidt

Ahmed Shuaibi

Richard Zhang

Clover Zheng

PRINCETON
UNIVERSITY

NIH NATIONAL CANCER INSTITUTE
Informatics Technology for
Cancer Research

 SCHMIDT FUTURES