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Temporal and Spatiotemporal transcriptomics: Sequencing across
multiple time points during developmental and reprogramming processes

Reprogramming of fibroblasts to induced pluripotent stem
cells [Schiebinger, et al. Cell, (2019)]

Spatial Transcriptomics of mouse embryos across
8 developmental stages
[Chen, et al. Cell, (2022)]

"And others!
(Pijuan-Sala et al.,
Nature, 2019)

(Liu et

al. Developmental
Cell, 2022)
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Defining Cell State Space

* Two key experimental technologies: Single-cell transcriptomics and
Spatial transcriptomics.

* Transcriptomics: D-dimensional “state-space” of vector with scalar expression of
the mRNA for each protein in cell (= RP)

« Single cell: Celli is its transcriptional state XV € RP

* Spatial transcriptomics: Cell i is its transcriptional state X® € RP augmented with
a spatial position 5(1) € R2or3

Dissociation Isolation of cells RNA extraction
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Temporal and Spatiotemporal transcriptomics:
Opens the Analysis of Fundamental Biological Questions!

Questions:

PERS 1. Ancestor-descendant
N relationships between cells across
two timepoints?

2. Cell-states or types which index the
temporal process of development?

Y 3. Trajectories between these cell
;" types?
Limitations:

- Technology is destructive — each
sample from a different individual

Th ||W dd t L d n M M
& "Waddington Landscape - Do not have ground-truth trajectories!

4



Waddington Potential Landscape

* What’s a reasonable modeling assumption for how cells evolve?

* In The Strategy of the Genes ‘567, C.H. Waddington Conjectured:

* Cell differentiation pathways = A gradient-flow on a potential
landscape

i.e. minimize V(x) via dissipative descent:

r=—-VV(zx)
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The "Waddington Landscape”



Waddington Potential+ Landscape

* Since we observe cell distribution marginals at different time-points p;(x)
with stochasticity, one needs to augment the particle-flow view!

* This can be viewed as a descent over the particle-distribution p:(x) itself
with Langevin dynamics (Biondo ’25, Lavenant & Schiebinger ‘21)

Continuity-equation: probability mass o
(rather than points) flows down landscape . ab'

Oipt =V - (ptVV) + T Apy
dX; = —VV (z)dt + V2TdB,

i \‘Mi\\‘


https://pubmed.ncbi.nlm.nih.gov/?term=%22Biondo%20M%22%5BAuthor%5D
https://arxiv.org/search/stat?searchtype=author&query=Lavenant,+H
https://arxiv.org/search/stat?searchtype=author&query=Schiebinger,+G

Resolving Trajectories on the Landscape

* There are a few practical difficulties with applying this model.:
1. We do not know the landscape a priori
2. We only observe discrete “snapshots”
N
(=337
t=1
generated from the unknown landscape.

3. Without the landscape, we do not know which cells
transitioned to which!
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Resolving Trajectories on the Landscape

* Let’s look at a pair of densities py, p; and apply Occam’s Razor to the
velocities which can take py — p1:

Q: What is the time-varying distribution p; and velocity field v, of least
kinetic energy between the two distributions?

1
it § [ ol i)
(pt,vt) 0 JRd

Oipr = —V - (Pt’vt); PO = Pt=0, P1 = Pt—1}




Solution: Optimal Transport! = Gy

* (Benamou & Brenier, 2000): The minimal kinetic energy value for this
probability-flow is the Wasserstein distance of optimal transport (OT)

1
(lllf ) {] J ||vt||§pt(d$) 8tpt = —v . (ptvt)a Po = Pt=0, P1 = pt—]_}
Pt VUt 0 R
2
= W35 (po, p1) !

- The optimal velocity field is given by the transport map! We can *just” solve
for OT velocity directly. Coincides with gradient flow velocity in limit of taking
the time-interval to zero (Jordan, Kinderlehrer & Otto, ‘98): discrete OT on

fine time-intervals can recover any dynamics.
Conclusion: OTis “most natural” choice!




Discrete Optimal Transport

* Practically, when p, = Z?=O1 a;0,, and p; = 2;1:11 b;dy;, (usually uniform), OT

IS solved by the discrete optimization problem:

P = argmin (C, P> . X; Cij = cost(xi,y;) .y:f
®
Pcll(a,b) ° .
. ® @
= argmin E Ci;iPi; e .
Pcll(a,b) i °
®

(a,b) = {P € R?*™:P1,, = a, P'1, = b}



Existing Techniques for Optimal Transport

* Many existing methods map the time-dynamics of cells using variations of
optimal transport (
) with great success

* However, they infer full-rank structure through cell-cell couplings, as
opposed to low-rank structures in the mapping

Cell-to-cell Coupling: Full-rank structure




Low-Rank Structure in the Transport

* OT maps (without entropy regularization) are bijections

* No true low-rank structure and flat spectrum of singular values = 1!

Cell-to-cell Coupling: Full-rank structure

Latent Trajectories: Low-Rank Structure




Low-Rank Structure in the Transport

* Examples of low-rank structure in the transport include latent cell-state

and the differentiation map between these states
* The “canals” or “latent-trajectories” of Waddington’s landscape are low-rank

structures!
Existing techniques assume cell-state inference is distinct from transport

and don’t bridge the two.

@)

cells
“cell type” O- \
o : O )

A cell-t i r aining of cell A differentiation map is a directed acyclic
celi-lype IS a coarse-graining ot Cetis graph giving the ancestral relationship

into clusters.
O clusters between cell-types.
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Latent Trajectories over Cell-State

Our work addresses the following questions:
1. What cell-states "index" the temporal development process?
2. What is the differentiation map (DAG) between these cell states?

Latent Trajectories in Transport “cell type”

cells
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Hidden Markov Optimal Transport (HM-0OT)

(1) Discovers latent cell types and
aligns individual cells to them.

(2) Maps between the cell types while
minimizing an optimal transport cost.

(3) Uses low-rank optimal transport

todo (1) and (2) simultaneously
across multiple timepoints.

15



Example: Langevin on Tristable Potential

* Existing techniques assume cell-state inference is
distinct from transport. Where does this go wrong?

* Suppose cells follow Langevin on a tristable
landscape (Bhattacharya ‘11) and we measure
trajectories at 3 timepoints

(a) Timepoint 1 (b) Timepoint 2 (c) Timepoint 3
2 2 g 2 @
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Example: Langevin on Tristable Potential

* Clustering at each timepoint independently + full-rank OT fails to identify
the three true latent trajectories on the tri-stable landscape.

* Latent trajectories must be optimized jointly with the transport!

Hidden-Markov OT (HM-OT) Clustering + Full-rank OT
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Low-rank OT: Latent Structure in Transport

A rank-r coupling P may always represented (Scetbon ‘21,
Cohen & Rothblum) by the factorization

P = Qdiag(g ")R'

Low-rank optimal transport (Forrow ‘19, Scetbon '21) solves
primal OT with this factorization

(Parametrization) P = Qdiag(l/g)RT
(Loss) Lior = (C, Qdiag(l/g)RT)
(Constraints) FCqp(r) :={(Q,R,g) e RT"" xRT*" x (RL)" : Q €Ilg g, R € Ilp g}

% PRINCETON UNIVERSITY 18



Low-rank OT: Latent Structure in Transport

P = leag(g_l)RT “Outer marginal:” the points
Ql. =a, Rl1, =D

Low-rank OT

“Inner marginal:” the latent co-clusters

;] — QT]-R — RT]—n

% PRINCETON UNIVERSITY
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Low-rank OT: key benefits

1. It captures latent, interpretable
structure in the transport (Forrow ‘19,
Lin ‘21) with /inear complexity.

2. It offers a framework for co-clustering
and generalizes K-means to a pair of
datasets (Scetbon '22).

3. Full-rank OT can reduce to low-rank
OT with linear space and O(n log n)
time™ with Hierarchical Refinement

( ).

% PRINCETON UNIVERSITY

ShapeNet Chairs

(c) LOT (4,4)

(d) LOT (8,4)
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Low-rank Optimal Transport

One issue with this factorization: It does not account for
hidden transition or DAG structure!

P = Qdiag(g ")R'

Low-rank OT

% PRINCETON UNIVERSITY
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Low-Rank Optimal Transport with Latent Coupling:
A Special Parametrization
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Factor relaxation with latent coupling (FRLC)

Low rank approximation of optimal transport
Halmos*, Liu*, Gold*, R. NeurlPS (2024)
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Factor-Relaxation and Latent Coupling

* LC (latent coupling) parametrization decouples problem using
coordinate mirror-descent, with the introduction of a latent
coupling T between two inner marginals go and gg

(Parametrization) Qdiag(l/gQ)Tdiag(l/gR)RT = P(Q,R,T)

(Loss) L1c(Q,R,T):=(C,Pqg,rT))F>

(Constraints) LCos(r) ={(Q,R,T)c R}Y*" xR xR*":Q €llg.,ReIly., T € Ilg, g,}
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Factor-Relaxation and Latent Coupling
(Algorithm)

Qr < ﬁa,gQ(Qk ©exp(—1%VaqQ))
R + f[b,gR (Ri ® exp(—vxVR))

dQ,dgRr = Q’]f]-na Rglm
Ty < gy 9o (Tk © exp(—yrVT))

Factor relaxation with latent coupling (FRLC) Efficiently solved with Mirror-Descent:

Low rank approximation of optimal transport alternating Sinkhorn projections!
Halmos*, Liu*, Gold*, R. NeurlPS (2024)
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Interpretation of Latent Coupling

LC (latent coupling) factorization of P imposes rank
constraint and decomposes P into 3 factors while keeping it a
feasible coupling

— P = Qldiag(l/g1)Tdiag(l/gZ)Qrzr

Couples pointdistribution attime 1 to
Q. € II(a, g1) cell-state distribution attime 1

Couples cell-type distribution at time 1 to
T S H(gl ? g2) cell-state distribution attime 2

T Couples cell-state distribution attime 2 to
Q2 < H(g27 b)

point distribution at time 2
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Hidden-Markov OT:
Linking Latent Trajectories Through Time

- w. o
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(C.QUdiag(1/g)Q"""),
K-Means (C, Q" diag(1/g)Q"T), “

Classical Low-Rank
Optimal Transport

(C. Q" diag(1/g,)T"diag(1/g,)Q™" "),

Latent Coupling Low-Rank
Optimal Transport

Z (€D QM diag(1/g,) T+ Vdiag(1/g,.,)Q"* "),
Hidden-Markov Optimal Transport



Hidden-Markov Optimal Transport

* The key idea of HM-OT is to (1) use the latent-coupling parametrization to
capture cell differentiation and transitions, and (2) extend the loss function
of low-rank OT to account for many timepoints

* Introduce cells encoded as distributions a, cell-type vectors g,, and a
coupling (latent representation) between these cells their types Q,

Parametrization and constraints are same as FRLC, but with time index!

(Parametrization) P+ .= Q,diag(1/g;) Tt Vdiag(1/g:+1) QL

(Constraints) LCa;,a, ¢ (T¢,T¢41)
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Hidden-Markov Optimal Transport

* The factors need to be linked across time for cell-state to be defined
consistently: multi-marginal extension of low-rank OT

* Cost minimizes the global distance of latent trajectories across time

Different loss! Generalized and linked across many timepoints.

N-1

- (t,t4+1) p(t,t+1)
. (t,e11)) ) (ClrHD Pt
(LOSS) QaT (Qt7Qt—|—laT )ELCat:at+1 ('rt,rt+1) t—1
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Hidden-Markov Optimal Transport

Problem: Given empirical distributions ( a, )., _y find the latent factors ( Q)1
and differentiation maps (T®*"),_; \; that minimize the Wasserstein cost of the
latent states through time.

N-1
min Z (C(t,t-l—l), P(t,t—l—l))F
Q.T: (Q:,Qey1, T HELCq, a, ; (Teime41) T1

PR o= Qtdiag(l/gt)T(t’t+1)diag(1/gt+1)Q;ﬂl

29




Hidden-Markov OT
(Algorithm)

* Decouples sequential problem in time into greedy Forward-Backward
estimates of (Q,, T®"*1), g.) which are solved with FRLC.

* Decoupling is like the forward-backward algorithm for Hidden Markov
Models (HMM)

30



Hidden-Markov OT (Flexibility)

* Highly flexible in terms of input information! One can either run
fully unsupervised or constrain any subset of the variables:

oCell-type proportions (g,)
oCell to cell-type assignments (Q,)
oCell-type to cell-type (e.g. lineage) transition structure (T(EE+D)

31



HM-OT: Flexible Toolbox for (Co) Clustering

Transfer known clusters forwards
or backwards in time to other data

Learn cell state/type from scratch
to minimize HM-OT objective

Project or co-cluster cell-types forward and
backward in time through differentiation map




Large-Scale Inference of Differentiation Maps

Lightning fast and space-efficient; can scale maps to millions of points!

Spatial (Stereo-Seq) Mouse Development (Chen et al '22)
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Large-Scale Inference of Differentiation Maps
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] | HM-O0T oth . _ _
| B moscot ther true transitions identified:

— * urogenital ridge transitioning to ovary (NPMI = 0.560, E11.5-12.5)

z
“0.4
S

* lung primordium transitioning to lung (NPMI=0.927, E12.5-13.5)

* dermomyotome transitioning to muscle (NPMI=0.968, E11.5-12.5)

0.0 e :| — T * sclerotome transitioning to cartilage primordium (NPMI=0.866, E11.5-12.5)

‘ * surface ectoderm transitioning to the epidermis (NPMI=0.705, E11.5-12.5)
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Summary

HM-OT: a scalable algorithm to infer differentiation maps, discover
temporal co-clusters, and track cell-types through time and space.

o HM-OT introduces a novel multi-marginal optimal transport formulation
to map cell-type differentiation

o Optimizes this factorization across a full time-series of temporal

transcriptomics (or other!) data

Thank youl!

https://github.com/raphael-group/HM-0OT/

s
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https://github.com/raphael-group/HM-OT/
https://github.com/raphael-group/HM-OT/
https://github.com/raphael-group/HM-OT/
https://github.com/raphael-group/HM-OT/
https://github.com/raphael-group/HM-OT/
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