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Temporal and Spatiotemporal transcriptomics: Sequencing across 
multiple time points during developmental and reprogramming processes

*And others!
(Pijuan-Sala et al., 
Nature, 2019)
(Liu et 
al. Developmental 
Cell, 2022)

...

Spatial Transcriptomics of mouse embryos across 
8 developmental stages 
[Chen, et al. Cell, (2022)]

Reprogramming of fibroblasts to induced pluripotent stem 
cells [Schiebinger, et al. Cell, (2019)]
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Defining Cell State Space
• Two key experimental technologies: Single-cell transcriptomics and 

Spatial transcriptomics. 
• Transcriptomics: D-dimensional “state-space” of vector with scalar expression of 

the mRNA for each protein in cell (= ℝD)
• Single cell: Cell 𝑖 is its transcriptional state X(i) ∈ ℝD

• Spatial transcriptomics: Cell 𝑖 is its transcriptional state X(i) ∈ ℝD augmented with 
a spatial position s(i) ∈ ℝ2 or 3 

x



Temporal and Spatiotemporal transcriptomics:
 Opens the Analysis of Fundamental Biological Questions!

Questions:
1. Ancestor-descendant 

relationships between cells across 
two timepoints?

2. Cell-states or types which index the 
temporal process of development?

3. Trajectories between these cell 
types?

Limitations:
-   Technology is destructive – each 
sample from a different individual
-   Do not have ground-truth trajectories!The "Waddington Landscape" 
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Waddington Potential Landscape
• What’s a reasonable modeling assumption for how cells evolve?
• In The Strategy of the Genes ‘57, C.H. Waddington Conjectured:

• Cell differentiation pathways ≈ A gradient-flow on a potential 
landscape

i.e. minimize V(x) via dissipative descent:

The "Waddington Landscape" 
Photo cred: (Waddington, 1957)



Waddington Potential+ Landscape

Biondo Lavenant Schiebinger

• Since we observe cell distribution marginals at different time-points ρt(x) 
with stochasticity, one needs to augment the particle-flow view!

• This can be viewed as a descent over the particle-distribution ρt(x) itself 
with Langevin dynamics (Biondo ’25, Lavenant & Schiebinger ‘21) 

Continuity-equation: probability mass
 (rather than points) flows down landscape

https://pubmed.ncbi.nlm.nih.gov/?term=%22Biondo%20M%22%5BAuthor%5D
https://arxiv.org/search/stat?searchtype=author&query=Lavenant,+H
https://arxiv.org/search/stat?searchtype=author&query=Schiebinger,+G


Resolving Trajectories on the Landscape
• There are a few practical difficulties with applying this model:

1. We do not know the landscape a priori
2. We only observe discrete “snapshots”

  ρt =
1

𝑛𝑡
σ

𝑖=1
𝑛𝑡 𝛿𝑥𝑖

t=1

N

generated from the unknown landscape.
3. Without the landscape, we do not know which cells 

transitioned to which!



Resolving Trajectories on the Landscape

• Let’s look at a pair of densities 𝜌0, 𝜌1 and apply Occam’s Razor to the 
velocities which can take 𝜌0 → 𝜌1: 

Q: What is the time-varying distribution 𝜌𝑡  and velocity field 𝑣𝑡  of least 
kinetic energy between the two distributions?



Solution: Optimal Transport!

• (Benamou & Brenier, 2000): The minimal kinetic energy value for this 
probability-flow is the Wasserstein distance of optimal transport (OT)

- The optimal velocity field is given by the transport map! We can *just* solve 
for OT velocity directly. Coincides with gradient flow velocity in limit of taking 
the time-interval to zero (Jordan, Kinderlehrer & Otto, ‘98): discrete OT on 
fine time-intervals can recover any dynamics.
   Conclusion: OT is “most natural” choice!



Discrete Optimal Transport

• Practically, when 𝜌0 = σ
𝑖=1
𝑛0 𝑎𝑖

 𝛿𝑥𝑖
 and 𝜌1 = σj=1

𝑛1 bj
 𝛿𝑥𝑖

, (usually uniform), OT 
is solved by the discrete optimization problem:



Existing Techniques for Optimal Transport

• Many existing methods map the time-dynamics of cells using variations of 
optimal transport (Schiebinger et al 2019, Zeira et al 2022, Klein et al 2025, 
Liu & Halmos et al 2025) with great success

• However, they infer full-rank structure through cell-cell couplings, as 
opposed to low-rank structures in the mapping

Cell-to-cell Coupling: Full-rank structure



Low-Rank Structure in the Transport

• OT maps (without entropy regularization) are bijections
• No true low-rank structure and flat spectrum of singular values = 1!

Cell-to-cell Coupling: Full-rank structure Latent Trajectories: Low-Rank Structure



Low-Rank Structure in the Transport
• Examples of low-rank structure in the transport include latent cell-state 

and the differentiation map between these states
• The “canals” or “latent-trajectories” of Waddington’s landscape are low-rank 

structures!

• Existing techniques assume cell-state inference is distinct from transport 
and don’t bridge the two.

A differentiation map is a directed acyclic 
graph giving the ancestral relationship 
between cell-types.

A cell-type is a coarse-graining of cells 
into clusters.



Latent Trajectories over Cell-State

Our work addresses the following questions:
1. What cell-states "index" the temporal development process?

2. What is the differentiation map (DAG) between these cell states?

“cell type”

cells

Latent Trajectories in Transport
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Hidden Markov Optimal Transport (HM-OT) 

(1) Discovers latent cell types and 
aligns individual cells to them.

(2) Maps between the cell types while 
minimizing an optimal transport cost.

(3) Uses low-rank optimal transport (Forrow et 
al '19, Scetbon et al '20, Lin et al '21, Halmos 
et al '24) to do (1) and (2) simultaneously 
across multiple timepoints.
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Example: Langevin on Tristable Potential

• Existing techniques assume cell-state inference is 
distinct from transport. Where does this go wrong?

• Suppose cells follow Langevin on a tristable 
landscape (Bhattacharya ‘11) and we measure 
trajectories at 3 timepoints

Hidden-Markov OT (HM-OT) Waddington-OT (WOT)  



Example: Langevin on Tristable Potential
• Clustering at each timepoint independently + full-rank OT fails to identify 

the three true latent trajectories on the tri-stable landscape.
• Latent trajectories must be optimized jointly with the transport!

Hidden-Markov OT (HM-OT) Clustering + Full-rank OT 

"Glia" "Pre-Glia"

"Neuron"

"Pre-Neuron"

"Astrocyte"

"Pre-Astrocyte"



Low-rank OT: Latent Structure in Transport
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- A rank-r coupling P may always represented (Scetbon ’21, 
Cohen & Rothblum) by the factorization

- Low-rank optimal transport (Forrow ‘19, Scetbon ‘21) solves 
primal OT with this factorization

(Parametrization)

(Loss)

(Constraints)



Low-rank OT: Latent Structure in Transport
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a b

Low-rank OT

Q R

g

“Outer marginal:” the points

“Inner marginal:” the latent co-clusters
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Low-rank OT: key benefits

1. It captures latent, interpretable 
structure in the transport (Forrow ‘19, 
Lin ’21) with linear complexity.

2. It offers a framework for co-clustering 
and generalizes K-means to a pair of 
datasets (Scetbon ‘22).

3. Full-rank OT can reduce to low-rank 
OT with linear space and O(n log n) 
time* with Hierarchical Refinement 
(Halmos&Gold, ICML ’25).



Low-rank Optimal Transport
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- One issue with this factorization: It does not account for 
hidden transition or DAG structure!

a b

Low-rank OT

Q R

g



Low-Rank Optimal Transport with Latent Coupling:
 A Special Parametrization

Halmos*, Liu*, Gold*, R. NeurIPS (2024)

Factor relaxation with latent coupling (FRLC)
Low rank approximation of optimal transport

𝒂

𝒃

Low-rank OT finds a latent trajectory of least 
action with respect to transcriptional distance on 
landscape.

I.e.: Find most "natural" or efficient clusters and 
cluster transitions.
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Factor-Relaxation and Latent Coupling

• LC (latent coupling) parametrization decouples problem using 
coordinate mirror-descent, with the introduction of a latent 
coupling T between two inner marginals gQ and gR
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(Parametrization)

(Loss)

(Constraints)



Factor-Relaxation and Latent Coupling 
(Algorithm)

Halmos*, Liu*, Gold*, R. NeurIPS (2024)

Factor relaxation with latent coupling (FRLC)
Low rank approximation of optimal transport
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Efficiently solved with Mirror-Descent:
alternating Sinkhorn projections!



Interpretation of Latent Coupling

25

Couples point distribution at time 1 to 
cell-state distribution at time 1

Couples cell-type distribution at time 1 to 
cell-state distribution at time 2

Couples cell-state distribution at time 2 to 
point distribution at time 2

LC (latent coupling) factorization of P imposes rank 
constraint and decomposes P into 3 factors while keeping it a 
feasible coupling



Hidden-Markov OT: 
Linking Latent Trajectories Through Time
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Hidden-Markov Optimal Transport
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• The key idea of HM-OT is to (1) use the latent-coupling parametrization to 
capture cell differentiation and transitions, and (2) extend the loss function 
of low-rank OT to account for many timepoints

• Introduce cells encoded as distributions 𝒂𝑡, cell-type vectors 𝒈𝑡, and a 
coupling (latent representation) between these cells their types 𝑸𝑡

(Parametrization)

(Constraints)

Parametrization and constraints are same as FRLC, but with time index!



Hidden-Markov Optimal Transport
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• The factors need to be linked across time for cell-state to be defined 
consistently: multi-marginal extension of low-rank OT

• Cost minimizes the global distance of latent trajectories across time

(Loss)

Different loss! Generalized and linked across many timepoints.



Hidden-Markov Optimal Transport
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Problem: Given empirical distributions ( 𝒂𝑡 )t=1,..,N find the latent factors ( 𝑸𝑡 )t=1,..,N 
and differentiation maps ( T(t,t+1) )t=1,..,N-1 that minimize the Wasserstein cost of the 
latent states through time.



Hidden-Markov OT
(Algorithm)
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• Decouples sequential problem in time into greedy Forward-Backward 
estimates of (Qt , T(t,t+1), gt) which are solved with FRLC. 

• Decoupling is like the forward-backward algorithm for Hidden Markov 
Models (HMM)



Hidden-Markov OT (Flexibility)
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• Highly flexible in terms of input information! One can either run 
fully unsupervised or constrain any subset of the variables:

oCell-type proportions (𝒈𝒕)
oCell to cell-type assignments (𝑸𝒕)
oCell-type to cell-type (e.g. lineage) transition structure (𝑻 𝑡,𝑡+1 )



HM-OT: Flexible Toolbox for (Co) Clustering 
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Transfer known clusters forwards 
or backwards in time to other data

Learn cell state/type from scratch 
to minimize HM-OT objective

Project or co-cluster cell-types forward and 
backward in time through differentiation map



Large-Scale Inference of Differentiation Maps
Lightning fast and space-efficient; can scale maps to millions of points!

Temporal (Single-Cell) Mouse Embryogenesis (Qiu et al '24)

Spatial (Stereo-Seq) Mouse Development (Chen et al '22)
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Large-Scale Inference of Differentiation Maps

Spatial (Stereo-Seq) Mouse Development (Chen et al '22) 34

moscot spatiotemporalHM-OT

Other true transitions identified:

• urogenital ridge transitioning to ovary (NPMI = 0.560, E11.5-12.5)

• lung primordium transitioning to lung (NPMI=0.927, E12.5-13.5)

• dermomyotome transitioning to muscle (NPMI=0.968, E11.5-12.5) 

• sclerotome transitioning to cartilage primordium (NPMI=0.866, E11.5-12.5)

• surface ectoderm transitioning to the epidermis (NPMI=0.705, E11.5-12.5) 



Summary
HM-OT: a scalable algorithm to infer differentiation maps, discover 
temporal co-clusters, and track cell-types through time and space.

o HM-OT introduces a novel multi-marginal optimal transport formulation 
to map cell-type differentiation

o Optimizes this factorization across a full time-series of temporal 
transcriptomics (or other!) data

Thank you!
https://github.com/raphael-group/HM-OT/
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https://github.com/raphael-group/HM-OT/
https://github.com/raphael-group/HM-OT/
https://github.com/raphael-group/HM-OT/
https://github.com/raphael-group/HM-OT/
https://github.com/raphael-group/HM-OT/
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